Retinoblastoma (Rb) is the most common ocular paediatric malignancy and is caused by a mutation of the two alleles of the tumor suppressor gene, RB1. The tumor microenvironment (TME) represents a complex system whose function is not yet well defined and where microvesicles, such as exosomes, play a key role in intercellular communication. Micro-RNAs (mRNAs) have emerged as important modifiers of biological mechanisms involved in cancer and been able to regulate tumor progression. Methods: Co-culture of monocytes with retinoblastoma cell lines, showed a significant growth decrease. Given the interaction between Rb cells and monocytes, we investigated the role of the supernatant in the cross-talk between cell lines, by taking the product of the co-culture and then using it as a culture medium for Rb cells. Results: miR-142-3p showed to be particularly over-expressed both in the Rb cell line and in the medium used for their culture, comparing to control cell line and the normal supernatant, respectively. Therefore, we provided evidence that miR-142-3p is released by monocytes in the co-culture medium's exosomes and that it is subsequently up-taken by Rb cells, causing the inhibition of proliferation of Rb cell line by affecting cell cycle progression. Conclusion: This study highlights the role of exosomic miR-142-3p in the TME of Rb and identifies new molecular targets, which are able to control tumor growth aiming the development of a forward-looking miR-based strategy.

Growth Inhibition of Retinoblastoma Cell Line by Exosome-Mediated Transfer of miR-142-3p

Melloni, Mattia;
2022

Abstract

Retinoblastoma (Rb) is the most common ocular paediatric malignancy and is caused by a mutation of the two alleles of the tumor suppressor gene, RB1. The tumor microenvironment (TME) represents a complex system whose function is not yet well defined and where microvesicles, such as exosomes, play a key role in intercellular communication. Micro-RNAs (mRNAs) have emerged as important modifiers of biological mechanisms involved in cancer and been able to regulate tumor progression. Methods: Co-culture of monocytes with retinoblastoma cell lines, showed a significant growth decrease. Given the interaction between Rb cells and monocytes, we investigated the role of the supernatant in the cross-talk between cell lines, by taking the product of the co-culture and then using it as a culture medium for Rb cells. Results: miR-142-3p showed to be particularly over-expressed both in the Rb cell line and in the medium used for their culture, comparing to control cell line and the normal supernatant, respectively. Therefore, we provided evidence that miR-142-3p is released by monocytes in the co-culture medium's exosomes and that it is subsequently up-taken by Rb cells, causing the inhibition of proliferation of Rb cell line by affecting cell cycle progression. Conclusion: This study highlights the role of exosomic miR-142-3p in the TME of Rb and identifies new molecular targets, which are able to control tumor growth aiming the development of a forward-looking miR-based strategy.
2022
Plousiou, Meropi; De Vita, Alessandro; Miserocchi, Giacomo; Bandini, Erika; Vannini, Ivan; Melloni, Mattia; Masalu, Nestory; Fabbri, Francesco; Serra,...espandi
File in questo prodotto:
File Dimensione Formato  
Plousiou M et al_Cancer Management and Research_2022.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 5.56 MB
Formato Adobe PDF
5.56 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2530733
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact