Rett syndrome is a rare genetic neurodevelopmental disease, affecting 1 in over 10,000 females born worldwide, caused by de novo mutations in the X-chromosome-located methyl-CpG-binding protein 2 (MeCP2) gene. Despite the great effort put forth by the scientific community, a therapy for this devastating disease is still needed. Here, we tested the therapeutic effects of a painless mutein of the Nerve Growth Factor, called human NGF painless (hNGFp), via a non-invasive intranasal delivery in female MeCP2+/- mice. Of note, previous work had demonstrated a broad biodistribution of hNGFp in the mouse brain by the nasal delivery route. We report that (1) the long-term lifelong treatment of MeCP2+/- mice with hNGFp, starting at 2 months of age, increased the chance of survival while also greatly improving behavioral parameters. Furthermore, when we assessed the phenotypic changes brought forth by (2) a short-term 1-month-long hNGFp-treatment, starting at 3 months of age (right after the initial presentation of symptoms), we observed the rescue of a well-known neuronal target population of NGF, cholinergic neurons in the medial septum. Moreover, we reveal a deficit in microglial morphology in MeCP2+/- mice, completely reversed in treated animals. This effect on microglia is in line with reports showing microglia to be a TrkA-dependent non-neuronal target cell population of NGF in the brain. To understand the immunomodulatory activity of hNGFp, we analyzed the cytokine profile after hNGFp treatment in MeCP2+/- mice, to discover that the treatment recovered the altered expression of key neuroimmune-communication molecules, such as fractalkine. The overall conclusion is that hNGFp delivered intranasally can ameliorate symptoms in the MeCP2+/- model of Rett syndrome, by exerting strong neuroprotection with a dual mechanism of action: directly on target neurons and indirectly via microglia.
Reversal of neurological deficits by painless nerve growth factor in a mouse model of Rett syndrome
Capsoni, Simona
Ultimo
2024
Abstract
Rett syndrome is a rare genetic neurodevelopmental disease, affecting 1 in over 10,000 females born worldwide, caused by de novo mutations in the X-chromosome-located methyl-CpG-binding protein 2 (MeCP2) gene. Despite the great effort put forth by the scientific community, a therapy for this devastating disease is still needed. Here, we tested the therapeutic effects of a painless mutein of the Nerve Growth Factor, called human NGF painless (hNGFp), via a non-invasive intranasal delivery in female MeCP2+/- mice. Of note, previous work had demonstrated a broad biodistribution of hNGFp in the mouse brain by the nasal delivery route. We report that (1) the long-term lifelong treatment of MeCP2+/- mice with hNGFp, starting at 2 months of age, increased the chance of survival while also greatly improving behavioral parameters. Furthermore, when we assessed the phenotypic changes brought forth by (2) a short-term 1-month-long hNGFp-treatment, starting at 3 months of age (right after the initial presentation of symptoms), we observed the rescue of a well-known neuronal target population of NGF, cholinergic neurons in the medial septum. Moreover, we reveal a deficit in microglial morphology in MeCP2+/- mice, completely reversed in treated animals. This effect on microglia is in line with reports showing microglia to be a TrkA-dependent non-neuronal target cell population of NGF in the brain. To understand the immunomodulatory activity of hNGFp, we analyzed the cytokine profile after hNGFp treatment in MeCP2+/- mice, to discover that the treatment recovered the altered expression of key neuroimmune-communication molecules, such as fractalkine. The overall conclusion is that hNGFp delivered intranasally can ameliorate symptoms in the MeCP2+/- model of Rett syndrome, by exerting strong neuroprotection with a dual mechanism of action: directly on target neurons and indirectly via microglia.File | Dimensione | Formato | |
---|---|---|---|
Tiberi et al Brain 2023 .pdf
accesso aperto
Tipologia:
Altro materiale allegato
Licenza:
Creative commons
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri |
Tiberi et al Brain 2024.pdf
accesso aperto
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.