A growth mode of pentacene thin films deposited by high vacuum sublimation where the morphology versus thickness h "rings" back and forth between rough 3D films with pyramid islands and smooth 2D films with ziqqurat islands is discovered. The roughness & sigma; versus h exhibits seamless coherent oscillations whose amplitude and wavelength increase as integer multiples of 1.5 ML thickness. The quantized oscillations are reconducted to dynamic wetting/dewetting transitions involving the upper layers of pentacene film. Importantly, the transconductance of organic field effect transistors, either in solid state or electrolyte-gated, exhibits antiphase oscillations with one-decade swing. Charge mobilities in the wetting regime reach 0.1 cm(2) V-1 s(-1), in line with high-end values reported for thin-film pentacene transistors. Controlling this growth mode enables the limitations of charge transport imposed by the roughening transition to be overcome, a universal feature of high vacuum growth to date.
Nanoscale Quantized Oscillations in Thin-Film Growth Greatly Enhance Transconductance in Organic Transistors
Greco P.;Papo D.;
2023
Abstract
A growth mode of pentacene thin films deposited by high vacuum sublimation where the morphology versus thickness h "rings" back and forth between rough 3D films with pyramid islands and smooth 2D films with ziqqurat islands is discovered. The roughness & sigma; versus h exhibits seamless coherent oscillations whose amplitude and wavelength increase as integer multiples of 1.5 ML thickness. The quantized oscillations are reconducted to dynamic wetting/dewetting transitions involving the upper layers of pentacene film. Importantly, the transconductance of organic field effect transistors, either in solid state or electrolyte-gated, exhibits antiphase oscillations with one-decade swing. Charge mobilities in the wetting regime reach 0.1 cm(2) V-1 s(-1), in line with high-end values reported for thin-film pentacene transistors. Controlling this growth mode enables the limitations of charge transport imposed by the roughening transition to be overcome, a universal feature of high vacuum growth to date.File | Dimensione | Formato | |
---|---|---|---|
Adv Elect Materials - 2023 - Drakopoulou - Nanoscale Quantized Oscillations in Thin‐Film Growth Greatly Enhance.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
2.43 MB
Formato
Adobe PDF
|
2.43 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.