A growth mode of pentacene thin films deposited by high vacuum sublimation where the morphology versus thickness h "rings" back and forth between rough 3D films with pyramid islands and smooth 2D films with ziqqurat islands is discovered. The roughness & sigma; versus h exhibits seamless coherent oscillations whose amplitude and wavelength increase as integer multiples of 1.5 ML thickness. The quantized oscillations are reconducted to dynamic wetting/dewetting transitions involving the upper layers of pentacene film. Importantly, the transconductance of organic field effect transistors, either in solid state or electrolyte-gated, exhibits antiphase oscillations with one-decade swing. Charge mobilities in the wetting regime reach 0.1 cm(2) V-1 s(-1), in line with high-end values reported for thin-film pentacene transistors. Controlling this growth mode enables the limitations of charge transport imposed by the roughening transition to be overcome, a universal feature of high vacuum growth to date.

Nanoscale Quantized Oscillations in Thin-Film Growth Greatly Enhance Transconductance in Organic Transistors

Greco P.;Papo D.;
2023

Abstract

A growth mode of pentacene thin films deposited by high vacuum sublimation where the morphology versus thickness h "rings" back and forth between rough 3D films with pyramid islands and smooth 2D films with ziqqurat islands is discovered. The roughness & sigma; versus h exhibits seamless coherent oscillations whose amplitude and wavelength increase as integer multiples of 1.5 ML thickness. The quantized oscillations are reconducted to dynamic wetting/dewetting transitions involving the upper layers of pentacene film. Importantly, the transconductance of organic field effect transistors, either in solid state or electrolyte-gated, exhibits antiphase oscillations with one-decade swing. Charge mobilities in the wetting regime reach 0.1 cm(2) V-1 s(-1), in line with high-end values reported for thin-film pentacene transistors. Controlling this growth mode enables the limitations of charge transport imposed by the roughening transition to be overcome, a universal feature of high vacuum growth to date.
2023
Drakopoulou, S.; Murgia, M.; Albonetti, C.; Benaglia, S.; Borgatti, F.; Di Lauro, M.; Bianchi, M.; Greco, P.; Papo, D.; Garcia, R.; Alessandrini, A.; ...espandi
File in questo prodotto:
File Dimensione Formato  
Adv Elect Materials - 2023 - Drakopoulou - Nanoscale Quantized Oscillations in Thin‐Film Growth Greatly Enhance.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 2.43 MB
Formato Adobe PDF
2.43 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2524935
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact