We prove a second order identity for the Kirchhoff equation which yields, in particular, a simple and direct proof of Pokhozhaev’s second order conservation law when the nonlinearity has the special form (C1s+C2)−2 . As applications, we give: an estimate of order ɛ−4 for the lifespan Tɛ of the solution of the Cauchy problem with initial data of size ɛ in Sobolev spaces when the nonlinearity is given by any C2 function m ( s ) > 0 ; a necessary and sufficient condition for boundedness of a second order energy of the solutions.
Notes on a paper of Pokhozhaev
Chiara BoitiPrimo
;
2023
Abstract
We prove a second order identity for the Kirchhoff equation which yields, in particular, a simple and direct proof of Pokhozhaev’s second order conservation law when the nonlinearity has the special form (C1s+C2)−2 . As applications, we give: an estimate of order ɛ−4 for the lifespan Tɛ of the solution of the Cauchy problem with initial data of size ɛ in Sobolev spaces when the nonlinearity is given by any C2 function m ( s ) > 0 ; a necessary and sufficient condition for boundedness of a second order energy of the solutions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
BM-Kirchhoff.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
140.17 kB
Formato
Adobe PDF
|
140.17 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2304.11673v1.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
141.38 kB
Formato
Adobe PDF
|
141.38 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.