Let be a quartic hypersurface of dimension over an infinite field k. We show that if either contains a linear subspace of dimension or has double points along a linear subspace of dimension, a smooth k-rational point and is otherwise general, then is unirational over k. This improves previous results by A. Predonzan and J. Harris, B. Mazur and R. Pandharipande for quartics. We also provide a density result for the k-rational points of quartic -folds with a double plane over a number field, and several unirationality results for quintic hypersurfaces over a field.

Quartic and Quintic Hypersurfaces with Dense Rational Points

Massarenti A.
Primo
2023

Abstract

Let be a quartic hypersurface of dimension over an infinite field k. We show that if either contains a linear subspace of dimension or has double points along a linear subspace of dimension, a smooth k-rational point and is otherwise general, then is unirational over k. This improves previous results by A. Predonzan and J. Harris, B. Mazur and R. Pandharipande for quartics. We also provide a density result for the k-rational points of quartic -folds with a double plane over a number field, and several unirationality results for quintic hypersurfaces over a field.
2023
Massarenti, A.
File in questo prodotto:
File Dimensione Formato  
Alex_FOM_S.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 504.27 kB
Formato Adobe PDF
504.27 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2518152
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact