This paper presents a novel reliability-based parametric methodology for quantifying the reliability of cost estimates for new composite aircraft components. In recent years, the aircraft production sector has increased its attention on optimizing their composite manufacturing operations. It has become clear that a key factor in the success of these operations is the consideration that not only technical factors, but also economic ones as well are relevant. Composite manufacturing variability is greatly influenced by many of these factors, and since manufacturing with composites is significantly more difficult than with more traditional materials, there are many sources of uncertainty that could influence the reliability of manufacturing cost estimates for new composite aircraft components. Therefore, it is worth considering these sources of uncertainty during the cost estimation process and to quantify the reliability of the cost estimates. To demonstrate the proposed methodology, a numerical example featuring a real-life composite aircraft component from a Boeing 787, with real-life data, is presented. Results show that the proposed methodology can quantify the uncertainty associated with cost estimates for new composite aircraft components in an effective manner, thereby supporting engineers in optimising the cost of their designs, helping them avoid errors in budget definition, and enabling them to allocate resources more efficiently.

A Cost Estimation Approach for Aircraft Design Enhancement

Llewellyn Morse;Vincenzo Mallardo;
2024

Abstract

This paper presents a novel reliability-based parametric methodology for quantifying the reliability of cost estimates for new composite aircraft components. In recent years, the aircraft production sector has increased its attention on optimizing their composite manufacturing operations. It has become clear that a key factor in the success of these operations is the consideration that not only technical factors, but also economic ones as well are relevant. Composite manufacturing variability is greatly influenced by many of these factors, and since manufacturing with composites is significantly more difficult than with more traditional materials, there are many sources of uncertainty that could influence the reliability of manufacturing cost estimates for new composite aircraft components. Therefore, it is worth considering these sources of uncertainty during the cost estimation process and to quantify the reliability of the cost estimates. To demonstrate the proposed methodology, a numerical example featuring a real-life composite aircraft component from a Boeing 787, with real-life data, is presented. Results show that the proposed methodology can quantify the uncertainty associated with cost estimates for new composite aircraft components in an effective manner, thereby supporting engineers in optimising the cost of their designs, helping them avoid errors in budget definition, and enabling them to allocate resources more efficiently.
2024
Raffaele, Abbate; Maria Antonietta, Turino; Morse, Llewellyn; Fera, Marcello; Mallardo, Vincenzo; Macchiaroli, Roberto
File in questo prodotto:
File Dimensione Formato  
IJDM-D-22-00959_R1-7-40.pdf

solo gestori archivio

Descrizione: Versione accettata per pubblicazione
Tipologia: Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.48 MB
Formato Adobe PDF
3.48 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
s12008-023-01397-3.pdf

accesso aperto

Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2514151
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact