The STEREO experiment measures the electron antineutrino spectrum emitted in a research reactor using the inverse beta decay reaction on H nuclei in a gadolinium loaded liquid scintillator. The detection is based on a signal coincidence of a prompt positron and a delayed neutron capture event. The simulated response of the neutron capture on gadolinium is crucial for the comparison with data, in particular in the case of the detection efficiency. Among all stable isotopes, 155Gd and 157Gd have the highest cross sections for thermal neutron capture. The excited nuclei after the neutron capture emit gamma rays with a total energy of about 8MeV. The complex level schemes of 156Gd and 158Gd are a challenge for the modeling and prediction of the deexcitation spectrum, especially for compact detectors where gamma rays can escape the active volume. With a new description of the Gd (n,γ) cascades obtained using the FIFRELIN code, the agreement between simulation and measurements with a neutron calibration source was significantly improved in the STEREO experiment. A database of ten millions of deexcitation cascades for each isotope has been generated and is now available for the user.

Improved STEREO simulation with a new gamma ray spectrum of excited gadolinium isotopes using FIFRELIN

Minotti A.;
2019

Abstract

The STEREO experiment measures the electron antineutrino spectrum emitted in a research reactor using the inverse beta decay reaction on H nuclei in a gadolinium loaded liquid scintillator. The detection is based on a signal coincidence of a prompt positron and a delayed neutron capture event. The simulated response of the neutron capture on gadolinium is crucial for the comparison with data, in particular in the case of the detection efficiency. Among all stable isotopes, 155Gd and 157Gd have the highest cross sections for thermal neutron capture. The excited nuclei after the neutron capture emit gamma rays with a total energy of about 8MeV. The complex level schemes of 156Gd and 158Gd are a challenge for the modeling and prediction of the deexcitation spectrum, especially for compact detectors where gamma rays can escape the active volume. With a new description of the Gd (n,γ) cascades obtained using the FIFRELIN code, the agreement between simulation and measurements with a neutron calibration source was significantly improved in the STEREO experiment. A database of ten millions of deexcitation cascades for each isotope has been generated and is now available for the user.
2019
Almazan, H.; Bernard, L.; Blanchet, A.; Bonhomme, A.; Buck, C.; Chebboubi, A.; del Amo Sanchez, P.; El Atmani, I.; Haser, J.; Kandzia, F.; Kox, S.; Labit, L.; Lamblin, J.; Letourneau, A.; Lhuillier, D.; Lindner, M.; Litaize, O.; Materna, T.; Minotti, A.; Pessard, H.; Real, J. -S.; Roca, C.; Salagnac, T.; Savu, V.; Schoppmann, S.; Sergeyeva, V.; Soldner, T.; Stutz, A.; Thulliez, L.; Vialat, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2512130
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 15
social impact