ATP is a ubiquitous extracellular messenger released in a wide number of pathophysiological conditions. ATP is known to be present in minute amounts in the extracellular space in healthy tissues and in the blood, and to modulate a multiplicity of cell responses. Cell culture systems are widely used to explore purinergic signaling. We show here that currently used fetal bovine sera contain ATP in the 300-1300 pmol/L range. Serum ATP is associated with albumin as well as with microparticle/microvesicle fraction. Serum microparticles/microvesicles affect in vitro cell responses due to their content of miRNAs, growth factors, and other bioactive molecules. ATP is likely to be one of these bioactive factors found in a variable amount in sera of different commercial sources. ATP in serum supports ATP-dependent biochemical reactions such as the hexokinase-dependent phosphorylation of glucose to glucose 6-phosphate, and affects purinergic signaling. These findings show that cells growing in vitro in serum-supplemented media are exposed to varying levels of extracellular ATP, and thus to varying degrees of purinergic stimulation.
Fetal bovine serum contains biologically available ATP
Valentina Vultaggio-PomaPrimo
Investigation
;Leticia Scussel BergaminSecondo
Investigation
;Simonetta FalzoniMethodology
;Mario TarantiniInvestigation
;Anna Lisa GiulianiWriting – Review & Editing
;Francesco Di Virgilio
Ultimo
Writing – Review & Editing
2024
Abstract
ATP is a ubiquitous extracellular messenger released in a wide number of pathophysiological conditions. ATP is known to be present in minute amounts in the extracellular space in healthy tissues and in the blood, and to modulate a multiplicity of cell responses. Cell culture systems are widely used to explore purinergic signaling. We show here that currently used fetal bovine sera contain ATP in the 300-1300 pmol/L range. Serum ATP is associated with albumin as well as with microparticle/microvesicle fraction. Serum microparticles/microvesicles affect in vitro cell responses due to their content of miRNAs, growth factors, and other bioactive molecules. ATP is likely to be one of these bioactive factors found in a variable amount in sera of different commercial sources. ATP in serum supports ATP-dependent biochemical reactions such as the hexokinase-dependent phosphorylation of glucose to glucose 6-phosphate, and affects purinergic signaling. These findings show that cells growing in vitro in serum-supplemented media are exposed to varying levels of extracellular ATP, and thus to varying degrees of purinergic stimulation.File | Dimensione | Formato | |
---|---|---|---|
s11302-023-09941-2.pdf
accesso aperto
Descrizione: Full text ahead of print
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
1.6 MB
Formato
Adobe PDF
|
1.6 MB | Adobe PDF | Visualizza/Apri |
s11302-023-09941-2.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
1.6 MB
Formato
Adobe PDF
|
1.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.