Per- and polyfluoroalkyl substances (PFAS) are resistant to breakdown and are now considered ubiquitous and concerning contaminants. Although scientific and legislative interest in these compounds has greatly increased in recent decades, our knowledge about their environmental fate and their effects on organisms is still incomplete, especially those of the new generation PFAS. In this study, we analysed the level of PFAS contamination in the fish fauna of the Po River, the most important waterway in Italy, to evaluate the influence of different factors (such as fish ecological traits and parasitism) on the accumulation of 17 PFAS. After solvent extraction and purification, hepatic or intestinal tissues from forty specimens of bleak, channel catfish, and barbel were analysed by liquid chromatography coupled with mass spectrometry (LOQ = 2.5 ng/g w.w.). The prevalent PFAS were perfluorooctane sulfonate (PFOS), present in all samples at the highest concentration (reaching a maximum of 126.4 ng/g and 114.4 ng/g in bleak and channel catfish, respectively), and long-chain perfluoroalkyl carboxylic acids (PFDA and PFUnDA). Perfluorooctanoic acid and new generation PFAS (Gen X and C6O4) were not detected. Comparison of the hepatic contamination between the benthic channel catfish and the pelagic bleak showed similar concentrations of PFOS (p > 0.05) but significantly higher concentrations of other individual PFAS and of the sum of all measured PFAS (p < 0.05) in bleak. No correlation was found between the hepatic level of PFAS and fish size in channel catfish. For the first time, PFAS partitioning in a parasite-fish system was studied: intestinal acanthocephalans accumulated PFOS at lower levels than the intestinal tissue of their host (barbel), in contrast to what has been reported for other pollutants (e.g., metals). The infection state did not significantly alter the level of PFAS accumulation in fish, and acanthocephalans do not appear to be a good bioindicator of PFAS pollution.

PFAS levels in fish species in the Po River (Italy): New generation PFAS, fish ecological traits and parasitism in the foreground

Giari, L
Primo
;
Perra, G
;
Gavioli, A;Lanzoni, M
Penultimo
;
Castaldelli, G
Ultimo
2023

Abstract

Per- and polyfluoroalkyl substances (PFAS) are resistant to breakdown and are now considered ubiquitous and concerning contaminants. Although scientific and legislative interest in these compounds has greatly increased in recent decades, our knowledge about their environmental fate and their effects on organisms is still incomplete, especially those of the new generation PFAS. In this study, we analysed the level of PFAS contamination in the fish fauna of the Po River, the most important waterway in Italy, to evaluate the influence of different factors (such as fish ecological traits and parasitism) on the accumulation of 17 PFAS. After solvent extraction and purification, hepatic or intestinal tissues from forty specimens of bleak, channel catfish, and barbel were analysed by liquid chromatography coupled with mass spectrometry (LOQ = 2.5 ng/g w.w.). The prevalent PFAS were perfluorooctane sulfonate (PFOS), present in all samples at the highest concentration (reaching a maximum of 126.4 ng/g and 114.4 ng/g in bleak and channel catfish, respectively), and long-chain perfluoroalkyl carboxylic acids (PFDA and PFUnDA). Perfluorooctanoic acid and new generation PFAS (Gen X and C6O4) were not detected. Comparison of the hepatic contamination between the benthic channel catfish and the pelagic bleak showed similar concentrations of PFOS (p > 0.05) but significantly higher concentrations of other individual PFAS and of the sum of all measured PFAS (p < 0.05) in bleak. No correlation was found between the hepatic level of PFAS and fish size in channel catfish. For the first time, PFAS partitioning in a parasite-fish system was studied: intestinal acanthocephalans accumulated PFOS at lower levels than the intestinal tissue of their host (barbel), in contrast to what has been reported for other pollutants (e.g., metals). The infection state did not significantly alter the level of PFAS accumulation in fish, and acanthocephalans do not appear to be a good bioindicator of PFAS pollution.
2023
Giari, L; Guerranti, C; Perra, G; Cincinelli, A; Gavioli, A; Lanzoni, M; Castaldelli, G
File in questo prodotto:
File Dimensione Formato  
95 Giari et al. 2023 PFAS levels in fish species in the Po River STOTEN.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 932.5 kB
Formato Adobe PDF
932.5 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2507450
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 14
social impact