Levulinic acid (LA) is a worthwhile biochemical usable as a building-block for the formation of wide variety of chemicals and fuels. In the present work, a series of ion-exchanged ZSM-5-type zeolites were formulated in order to obtain a bifunctional catalyst with modulated acidity in the aspect of amount, strength, and type (Lewis and Brønsted) for the transformation of glucose as a bio-based model component to LA. In particular, ion-exchanged ZSM-5 were prepared by an aqueous ion-exchange method using NH4Cl and CuCl2 salts and a microwave-assisted solid-state ion-exchange technique using solid transition metal (Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(II)) chlorides. Morphological features and acidity of the catalysts were assessed using XRD, SEM, EDX, TG–DTA, N2-physisorption, NH3-TPD, and FTIR both as such and by adsorbing/desorbing 2,6-dimethylpyridine (2,6-DMP) as a probe molecule. Microwave has been selected as the best ion-exchange technique which led to the improvement of Lewis acidity of ZSM-5 and obtaining a balanced acid catalyst with a high Lewis to Brønsted acid ratio (L/B) and mostly weak and medium acid sites. Among several metal ions used for ion-exchange process, Cu(II) with high charge transfer and by introduction of low amount of acid sites acted as the best option for desired reaction pathway. Therefore, CuZSM5-M prepared by microwave technique with a balanced L/B ratio has shown the best performance in the conversion of glucose to LA with 37% yield.

Balanced acidity by microwave-assisted ion-exchange of ZSM-5 zeolite as a catalyst for transformation of glucose to levulinic acid

Cruciani G.;
2024

Abstract

Levulinic acid (LA) is a worthwhile biochemical usable as a building-block for the formation of wide variety of chemicals and fuels. In the present work, a series of ion-exchanged ZSM-5-type zeolites were formulated in order to obtain a bifunctional catalyst with modulated acidity in the aspect of amount, strength, and type (Lewis and Brønsted) for the transformation of glucose as a bio-based model component to LA. In particular, ion-exchanged ZSM-5 were prepared by an aqueous ion-exchange method using NH4Cl and CuCl2 salts and a microwave-assisted solid-state ion-exchange technique using solid transition metal (Mn(II), Fe(II), Fe(III), Co(II), Ni(II), Cu(II)) chlorides. Morphological features and acidity of the catalysts were assessed using XRD, SEM, EDX, TG–DTA, N2-physisorption, NH3-TPD, and FTIR both as such and by adsorbing/desorbing 2,6-dimethylpyridine (2,6-DMP) as a probe molecule. Microwave has been selected as the best ion-exchange technique which led to the improvement of Lewis acidity of ZSM-5 and obtaining a balanced acid catalyst with a high Lewis to Brønsted acid ratio (L/B) and mostly weak and medium acid sites. Among several metal ions used for ion-exchange process, Cu(II) with high charge transfer and by introduction of low amount of acid sites acted as the best option for desired reaction pathway. Therefore, CuZSM5-M prepared by microwave technique with a balanced L/B ratio has shown the best performance in the conversion of glucose to LA with 37% yield.
2024
Taghavi, S.; Ghedini, E.; Menegazzo, F.; Giordana, A.; Cerrato, G.; Cruciani, G.; Di Michele, A.; Zendehdel, M.; Signoretto, M.
File in questo prodotto:
File Dimensione Formato  
s13399-022-03026-7 (1).pdf

solo gestori archivio

Tipologia: Altro materiale allegato
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.12 MB
Formato Adobe PDF
4.12 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
s13399-022-03026-7.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 4.1 MB
Formato Adobe PDF
4.1 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2506292
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact