In silico numerical models, based on the fundamentals of fluid mechanics, are a powerful resource to aid the research in healthcare. These physically-based models represent an asset to comprehensively analyse, understand, and complement information gathered from clinical, in vivo data. To provide physiological and trustworthy results, the utmost attention must be posed on the correct representation of the interaction between blood and blood vessels. This PhD Thesis presents a cardiovascular model composed of a cardiac contraction model representing the left part of the heart properly coupled to the arterial network at the aortic root, therefore accounting for the ventricular–aortic interaction. The model is able to accurately predict the behaviour of the fluid-structure interaction that underlies the dynamics of blood in extended networks. A sophisticated 3-element viscoelastic model is employed for the mechanical characterization of vessels walls, and applied to obtain the fluid–structure interaction system in which the constitutive equation of the material is directly inserted into the system of partial differential equations. The system is solved recurring to a second-order Finite Volume Method together with an efficient and robust numerical scheme for the integration of hyperbolic balance laws systems. The first part of the Thesis focuses on the development of a numerical model for extended arterial networks where the viscoelastic contribution given by the constitutive equation is accounted for in all boundary sections of the network itself. In this context, the numerical treatment of junctions is based on the solution of a Riemann problem, and relies on a non–linear system of equations that guarantees the conservation of mass and total pressure in the junction. This numerical approach, which is extended to inlet and outlet sections of the network, is firstly validated in simple test cases and then in networks of increasing complexity. The second part of the Thesis presents applications of the developed cardiovascular network together with pulse wave analysis to investigate the effect of cardiac properties on arterial pulse waves. A computational proof–of–concept is performed to investigate how cardiac properties affect central and peripheral pulse waves and PPG pulse waves, and to what extent a cardiac dysfunction can be detected by the analysis of these physiological signals. Moreover, the research presents a state-of-the-art application of the cardiovascular model in the field of isolate systolic hypertension, which is a cardiovascular disease that often manifests with an increase in pulse pressure. In vivo data of measured blood pressure and velocity and in silico data obtained with the proposed numerical model are analysed complementarily to better understand the role of cardiac function and the haemodynamic mechanisms underlying pulse pressure elevation and its amplification in the periphery of the systemic circulation.
I modelli numerici per l’emodinamica basati sui fondamenti della meccanica dei fluidi, anche denominati modelli in silico, sono una preziosa risorsa per la ricerca in campo sanitario. Questi modelli fisicamente basati rappresentano una risorsa per analizzare, comprendere e integrare in modo esaustivo le informazioni raccolte dai dati clinici, anche detti in vivo. Per fornire risultati fisiologici e attendibili, e necessario porre la massima attenzione nella corretta rappresentazione dell’interazione tra il sangue e i vasi sanguigni. Questa Tesi di Dottorato presenta un modello cardiovascolare composto da un modello di contrazione cardiaca rappresentante la parte sinistra del cuore, propriamente accoppiato alla rete arteriosa in corrispondenza della radice aortica, che permette quindi di tenere conto dell’interazione ventricolo-aortica. Il modello e in grado di prevedere accuratamente il comportamento dell’interazione fluido-struttura che e alla base della dinamica del sangue in reti circolatorie estese. Un sofisticato modello viscoelastico a 3 elementi viene impiegato per la caratterizzazione meccanica delle pareti dei vasi e applicato per ottenere il sistema di interazione fluido-struttura, in cui l’equazione costitutiva del materiale viene inserita direttamente nel sistema di equazioni alle derivate parziali. Il sistema viene risolto ricorrendo a un Metodo ai Volumi Finiti del secondo ordine ed a uno schema numerico efficiente e robusto per l’integrazione di sistemi iperbolici di leggi di bilancio. La prima parte della Tesi si concentra sullo sviluppo di un modello numerico per reti arteriose estese in cui il contributo viscoelastico dato dall’equazione costitutiva e considerato in tutte le sezioni della rete stessa. A tal scopo, l’implementazione numerica delle giunzioni e basata sulla soluzione di un problema di Riemann, e si basa su un sistema di equazioni non lineari che garantisce la conservazione della massa e della pressione totale in ciascuna giunzione. Questo approccio numerico, che viene esteso alle sezioni in ingresso e di uscita della rete, viene prima convalidato con test semplici e successivamente con reti di complessità crescente. La seconda parte della Tesi presenta applicazioni del modello cardiovascolare, insieme all’analisi dei segnali d’impulso fisiologici, per studiare l’effetto delle proprietà cardiache sui segnali stessi. Viene eseguita un’analisi di natura computazionale per studiare come le proprietà cardiache influenzano i segnali di impulso arteriosi, centrali e periferici, e i segnali PPG, e in che misura una disfunzione cardiaca possa essere rilevata dall’analisi di questi stessi segnali. Inoltre, la ricerca presenta una applicazione innovativa del modello cardiovascolare nel campo dell’ipertensione sistolica isolata, una malattia cardiovascolare che spesso si manifesta con un aumento della pressione differenziale arteriosa. I dati di pressione e velocita misurati in vivo e quelli in silico ottenuti con il modello numerico proposto sono stati analizzati in modo complementare, per comprendere meglio il ruolo della funzione cardiaca e i meccanismi emodinamici alla base dell’innalzamento della pressione differenziale arteriosa e della sua amplificazione verso la periferia della circolazione sistemica.
The arterial cardiovascular network: modelling and applications
PICCIOLI, FRANCESCO
2023
Abstract
In silico numerical models, based on the fundamentals of fluid mechanics, are a powerful resource to aid the research in healthcare. These physically-based models represent an asset to comprehensively analyse, understand, and complement information gathered from clinical, in vivo data. To provide physiological and trustworthy results, the utmost attention must be posed on the correct representation of the interaction between blood and blood vessels. This PhD Thesis presents a cardiovascular model composed of a cardiac contraction model representing the left part of the heart properly coupled to the arterial network at the aortic root, therefore accounting for the ventricular–aortic interaction. The model is able to accurately predict the behaviour of the fluid-structure interaction that underlies the dynamics of blood in extended networks. A sophisticated 3-element viscoelastic model is employed for the mechanical characterization of vessels walls, and applied to obtain the fluid–structure interaction system in which the constitutive equation of the material is directly inserted into the system of partial differential equations. The system is solved recurring to a second-order Finite Volume Method together with an efficient and robust numerical scheme for the integration of hyperbolic balance laws systems. The first part of the Thesis focuses on the development of a numerical model for extended arterial networks where the viscoelastic contribution given by the constitutive equation is accounted for in all boundary sections of the network itself. In this context, the numerical treatment of junctions is based on the solution of a Riemann problem, and relies on a non–linear system of equations that guarantees the conservation of mass and total pressure in the junction. This numerical approach, which is extended to inlet and outlet sections of the network, is firstly validated in simple test cases and then in networks of increasing complexity. The second part of the Thesis presents applications of the developed cardiovascular network together with pulse wave analysis to investigate the effect of cardiac properties on arterial pulse waves. A computational proof–of–concept is performed to investigate how cardiac properties affect central and peripheral pulse waves and PPG pulse waves, and to what extent a cardiac dysfunction can be detected by the analysis of these physiological signals. Moreover, the research presents a state-of-the-art application of the cardiovascular model in the field of isolate systolic hypertension, which is a cardiovascular disease that often manifests with an increase in pulse pressure. In vivo data of measured blood pressure and velocity and in silico data obtained with the proposed numerical model are analysed complementarily to better understand the role of cardiac function and the haemodynamic mechanisms underlying pulse pressure elevation and its amplification in the periphery of the systemic circulation.File | Dimensione | Formato | |
---|---|---|---|
Piccioli_PhDThesis_2023.pdf
accesso aperto
Descrizione: Piccioli_PhDThesis_2023
Tipologia:
Tesi di dottorato
Dimensione
11.03 MB
Formato
Adobe PDF
|
11.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.