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Abstract
In silico numerical models, based on the fundamentals of fluid mechanics, are a pow-
erful resource to aid the research in healthcare. These physically–based models rep-
resent an asset to comprehensively analyse, understand, and complement informa-
tion gathered from clinical, in vivo data. To provide physiological and trustworthy
results, the utmost attention must be posed on the correct representation of the in-
teraction between blood and blood vessels.

This PhD Thesis presents a cardiovascular model composed of a cardiac contrac-
tion model representing the left part of the heart properly coupled to the arterial
network at the aortic root, therefore accounting for the ventricular–aortic interac-
tion. The model is able to accurately predict the behaviour of the fluid–structure
interaction that underlies the dynamics of blood in extended networks. A sophis-
ticated 3–element viscoelastic model is employed for the mechanical characterisa-
tion of vessels walls, and applied to obtain the fluid–structure interaction system in
which the constitutive equation of the material is directly inserted into the system
of partial differential equations. The system is solved recurring to a second–order
Finite Volume Method together with an efficient and robust numerical scheme for
the integration of hyperbolic balance laws systems.
The first part of the Thesis focuses on the development of a numerical model for
extended arterial networks where the viscoelastic contribution given by the consti-
tutive equation is accounted for in all boundary sections of the network itself. In this
context, the numerical treatment of junctions is based on the solution of a Riemann
problem, and relies on a non–linear system of equations that guarantees the conser-
vation of mass and total pressure in the junction. This numerical approach, which
is extended to inlet and outlet sections of the network, is firstly validated in simple
test cases and then in networks of increasing complexity.
The second part of the Thesis presents applications of the developed cardiovascu-
lar network together with pulse wave analysis to investigate the effect of cardiac
properties on arterial pulse waves. A computational proof–of–concept is performed
to investigate how cardiac properties affect central and peripheral pulse waves and
PPG pulse waves, and to what extent a cardiac dysfunction can be detected by the
analysis of these physiological signals. Moreover, the research presents a state–of–
the–art application of the cardiovascular model in the field of isolate systolic hyper-
tension, which is a cardiovascular disease that often manifests with an increase in
pulse pressure. In vivo data of measured blood pressure and velocity and in silico
data obtained with the proposed numerical model are analysed complementarily to
better understand the role of cardiac function and the haemodynamic mechanisms
underlying pulse pressure elevation and its amplification in the periphery of the
systemic circulation.
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Key findings

- The presented Junction Riemann problem is able to treat internal boundary
conditions, i.e., branching and merging blood vessels sites, and external bound-
ary conditions, i.e., inlet and outlet sections of the network model, consistently
with the mathematical formulation of the governing system and the viscoelas-
tic Standard Linear Sold Model chosen to simulate the fluid-structure interac-
tion, conserving the prescribed order of accuracy.

- Capability of the viscoelastic Standard Linear Solid Model applied to extended
arterial networks to properly simulate the physiological behaviour of central
and peripheral blood vessels walls when undergoing pressure pulses.

- Strong dependence of the manifestation of the damping effect of blood ves-
sels walls, displayed by the widening of hysteresis loops, on input viscoelastic
parameters.

- Left atrium contractility manifests smaller effects on vascular pulse waves than
left ventricular contractility, which instead can greatly affect blood pressure
shape and amplitude, being a driver of pulse pressure and pulse pressure am-
plification.

- The timing of the dicrotic notch is eligible to be a left ventricular dysfunction
indicator.

- Cardiac valves impairment can be detected from pulse waves analysis.

- Left ventricular ejection and contractility directly influence the aortic flow rate,
which, in turns, has a key role in pulse pressure increase and its amplification
towards the periphery of the circulation. The mechanics of this phenomenon
is backed up by the increase in the forward blood pressure wave.

- PPG signals are suitable as easy–accessible data for cardiac dysfunction moni-
toring.
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Sommario
I modelli numerici per l’emodinamica basati sui fondamenti della meccanica dei flu-
idi, anche denominati modelli in silico, sono una preziosa risorsa per la ricerca in
campo sanitario. Questi modelli fisicamente basati rappresentano una risorsa per
analizzare, comprendere e integrare in modo esaustivo le informazioni raccolte dai
dati clinici, anche detti in vivo. Per fornire risultati fisiologici e attendibili, è nec-
essario porre la massima attenzione nella corretta rappresentazione dell’interazione
tra il sangue e i vasi sanguigni.

Questa Tesi di Dottorato presenta un modello cardiovascolare composto da un
modello di contrazione cardiaca rappresentante la parte sinistra del cuore, propri-
amente accoppiato alla rete arteriosa in corrispondenza della radice aortica, che
permette quindi di tenere conto dell’interazione ventricolo–aortica. Il modello è in
grado di prevedere accuratamente il comportamento dell’interazione fluido–struttura
che è alla base della dinamica del sangue in reti circolatorie estese. Un sofisticato
modello viscoelastico a 3 elementi viene impiegato per la caratterizzazione mecca-
nica delle pareti dei vasi e applicato per ottenere il sistema di interazione fluido–
struttura, in cui l’equazione costitutiva del materiale viene inserita direttamente nel
sistema di equazioni alle derivate parziali. Il sistema viene risolto ricorrendo a un
Metodo ai Volumi Finiti del secondo ordine ed a uno schema numerico efficiente e
robusto per l’integrazione di sistemi iperbolici di leggi di bilancio.
La prima parte della Tesi si concentra sullo sviluppo di un modello numerico per
reti arteriose estese in cui il contributo viscoelastico dato dall’equazione costitutiva
è considerato in tutte le sezioni della rete stessa. A tal scopo, l’implementazione nu-
merica delle giunzioni è basata sulla soluzione di un problema di Riemann, e si basa
su un sistema di equazioni non lineari che garantisce la conservazione della massa e
della pressione totale in ciascuna giunzione. Questo approccio numerico, che viene
esteso alle sezioni in ingresso e di uscita della rete, viene prima convalidato con test
semplici e successivamente con reti di complessità crescente.
La seconda parte della Tesi presenta applicazioni del modello cardiovascolare, in-
sieme all’analisi dei segnali d’impulso fisiologici, per studiare l’effetto delle propri-
età cardiache sui segnali stessi. Viene eseguita un’analisi di natura computazionale
per studiare come le proprietà cardiache influenzano i segnali di impulso arteriosi,
centrali e periferici, e i segnali PPG, e in che misura una disfunzione cardiaca possa
essere rilevata dall’analisi di questi stessi segnali. Inoltre, la ricerca presenta una ap-
plicazione innovativa del modello cardiovascolare nel campo dell’ipertensione sis-
tolica isolata, una malattia cardiovascolare che spesso si manifesta con un aumento
della pressione differenziale arteriosa. I dati di pressione e velocità misurati in vivo
e quelli in silico ottenuti con il modello numerico proposto sono stati analizzati in
modo complementare, per comprendere meglio il ruolo della funzione cardiaca e i
meccanismi emodinamici alla base dell’innalzamento della pressione differenziale
arteriosa e della sua amplificazione verso la periferia della circolazione sistemica.
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Risultati principali

- Il problema di Riemann presentato alla giunzione è in grado di trattare le con-
dizioni al contorno interne, cioè i siti di biforcazione e confluenza dei vasi
sanguigni, e le condizioni al contorno esterne, cioè le sezioni di ingresso e
di uscita del modello di rete, coerentemente con la formulazione matematica
del sistema di governo e il modello viscoelastico Standard Linear Sold Model
scelto per simulare l’interazione fluido–struttura, conservando l’ordine di ac-
curatezza prescritto.

- Capacità del modello viscoelastico Standard Linear Solid applicato a reti arte-
riose estese di simulare correttamente il comportamento fisiologico delle pareti
dei vasi sanguigni centrali e periferici quando vengono sottoposti a impulsi di
pressione.

- Forte dipendenza della manifestazione dell’effetto di smorzamento delle pareti
dei vasi sanguigni, mostrata dall’allargamento dei cicli di isteresi, dai parametri
viscoelastici in ingresso al modello.

- La contrattilità dell’atrio sinistro ha effetti minori sulle onde di impulso vasco-
lari rispetto alla contrattilità del ventricolo sinistro, che invece può influenzare
notevolmente la forma e l’ampiezza della pressione arteriosa, essendo deter-
minante per la pressione differenziale e per la sua amplificazione periferica.

- L’analisi dell’incisura dicrota è idonea a essere un indicatore di disfunzione
ventricolare sinistra.

- Il malfunzionamento delle valvole cardiache può essere rilevata dall’analisi
delle onde del polso.

- L’eiezione e la contrattilità del ventricolo sinistro influenzano direttamente la
portata aortica che, a sua volta, ha un ruolo chiave nell’aumento della pres-
sione differenziale arteriosa e nella sua amplificazione verso la periferia della
circolazione. La meccanica di questo fenomeno è corroborata dall’aumento
dell’onda pressoria in avanti.

- I segnali PPG sono dati di facile reperibilità adatti per il monitoraggio della
disfunzione cardiaca.
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Chapter 1

Introduction

1.1 Background and Motivation

Robust and efficient numerical schemes able to solve fluid mechanics balance
laws are at the basis of the analysis of wave propagation phenomena in human car-
diovascular networks. One-dimensional (1-D) in silico models have been broadly
used to study how blood pressure and flow rate affect the biological structure that
contains the fluid, namely arterial and venous walls (Reymond et al., 2009; For-
maggia, Lamponi, and Quarteroni, 2003; Mynard and Smolich, 2014; Quarteroni,
Veneziani, and Vergara, 2016), and they are used to investigate the haemodynamic
mechanisms underlying the interaction between pressure and flow, and the depen-
dence of these quantities on cardiac and vascular properties (Segers, Stergiopulos,
and Westerhof, 2000; Gaddum et al., 2017; Vennin et al., 2017; Flores Gerónimo et al.,
2021; Li et al., 2021). In fact, it is commonly acknowledged that the use of compu-
tational models provides a great assistance to the clinical research, having the possi-
bility to supply data that, otherwise, would require invasive techniques (Formaggia,
Quarteroni, and Veneziani, 2009; Ambrosi, Quarteroni, and Rozza, 2012; Willemet,
Vennin, and Alastruey, 2016). Furthermore, computational haemodynamics repre-
sents a valuable tool to foresee possible occurrences of diseases and the development
of pathologies related to the arterial system, as in the case of arterial hypertension
(Alastruey et al., 2007; Liang et al., 2011; Alastruey et al., 2012; Alastruey, Parker,
and Sherwin, 2012; Liang, Guan, and Alastruey, 2018; Müller et al., 2019), or to the
venous system (Toro et al., 2015; Toro, 2016).

Thus, to properly and accurately investigate the propagation of blood in circula-
tory systems, mathematical models need to consider that blood mechanically inter-
acts with vessel walls and tissues. Vessel walls are indeed deeply affected by inter-
nal pressure, undergoing strong deformations, even collapsing in the case of veins
under specific circumstances (Murillo, Navas-Montilla, and García-Navarro, 2019;
Toro and Siviglia, 2013; Spiller et al., 2017). The fluid-structure interaction (FSI) in
blood propagation phenomena requires the introduction of a constitutive law which
defines the transfer of energy between blood and vessel wall (Shapiro, 1977; Fung,
1997; Leguy, 2019; Bertaglia, Caleffi, and Valiani, 2020). Mechanically speaking,
rheological properties of arteries and veins are well-described by viscoelastic typi-
cal features (Armentano et al., 1995b; Armentano et al., 1995a; Zócalo et al., 2008;
Valdez-Jasso et al., 2009). The smooth muscle cells lends a viscoelastic behaviour
to the wall (Valdez-Jasso et al., 2009; Battista, 2015), which assumes a fundamental
role when high frequencies are dominant (Alastruey et al., 2012), whereas when the
stress is applied slowly, the viscous behaviour is negligible and the wall behaves
as purely elastic (Westerhof et al., 2019). At a macroscopic level, indeed, the ves-
sel wall can be seen as a complex multi-layer viscoelastic structure which deforms
under the action of blood pressure (Nichols et al., 2011; Wang, Golob, and Chesler,
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2016). Although neglected in some works in favour of simpler elastic models (Toro
and Siviglia, 2012; Xiao, Alastruey, and Figueroa, 2014; Boileau et al., 2015; Murillo,
Navas-Montilla, and García-Navarro, 2019), viscoelasticity adds a valuable contri-
bution to the representation of the problem, being able to capture damping effects
related to a partial loss of energy occurring during the deformation of the vessel
(Reymond et al., 2009; Valdez-Jasso et al., 2009; Alastruey et al., 2011; Alastruey et
al., 2012; Blanco et al., 2014; Müller, Leugering, and Blanco, 2016; Bertaglia, Caleffi,
and Valiani, 2020; Bertaglia et al., 2020; Blanco et al., 2020). This fundamental fea-
ture is also observable from hysteresis loops obtained by means of stress and strain
measurements in different vessels (Raghu et al., 2011; Bertaglia et al., 2020).

In healthcare research, in silico models are frequently used complementarily to in
vivo data, namely blood signals measurements directly conducted by experienced
operators in hospital wards. In vivo data represent the real manifestation of the
human physiology in several clinical conditions but do not allow an exhaustive
fluid mechanics–based analysis of their causes. On the other hand, in silico mod-
els aid the understanding of such conditions by providing even a great number of
numerical simulations conducted in a controlled environment without confounding
effects occurring in vivo, and mathematical analysis to recognise different contribu-
tions to blood pressure waves, achieving essential quantitative results (Parker, 2009;
Schultz et al., 2013; Willemet and Alastruey, 2015; Westerhof and Westerhof, 2017;
Mynard and Smolich, 2017; Mynard et al., 2020; Mariscal-Harana et al., 2021; Ven-
nin et al., 2021). In vivo and in silico data can be used to infer the haemodynamics
of blood–related pathologies, like hypertension, which is a cardiovascular disease
whose causes have been largely debated (Segers, Stergiopulos, and Westerhof, 2000;
Avolio et al., 2009). In particular, isolate systolic hypertension is defined by the in-
crease of the pressure difference between the maximum (systolic) and minimum (di-
astolic) pressure values, i.e., the pulse pressure (Franklin et al., 1997). This typology
of hypertension has always been predominately traced to vascular causes, such as
decreased arterial compliance, increased stiffness of arteries, and increased reflec-
tions at peripheral sites of the vasculature, leading to the anticipation of the arrival
of reflected waves that, overlapping with direct waves, results in increased pulse
pressure (Safar, Levy, and Struijker-Boudier, 2003; O’Rourke and Nichols, 2005;
O’Rourke and Hashimoto, 2007; Hashimoto and Ito, 2010). However, research has
recently highlighted that cardiac function, and especially left–ventricular ejection,
plays a non–negligible role in raising pulse pressure and amplifying it throughout
the vasculature (Schultz et al., 2013; Fok et al., 2014a; Torjesen et al., 2014; Gaddum
et al., 2017; Mariscal-Harana et al., 2021; Flores Gerónimo et al., 2021). Analyses
conducted by means of in silico models may give a better understanding on such
haemodynamics mechanisms, integrating experimental evidences.

1.2 Aims and Objectives

This PhD research aims at realising a mathematical model of the human cardio-
vascular network capable to simulate haemodynamic phenomena that are reflected
in clinical evidence. The fundamental aspect to achieve this goal is to develop a
model that should be able to properly simulate how blood vessels interact with
blood pressure pulses that are generated by the cardiac dynamics. Only by a correct
characterisation of this interaction, the propagation of pulse waves can be simulated
in a physiologically– and physically–based manner, from the very first site of emis-
sion, i.e., the heart, to the most peripheral sites of the circulation. Therefore, utmost
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attention has been posed on the mathematical modelling and numerical implemen-
tation of the mechanical behaviour of vessels walls in extended vascular networks,
as well as in the interpretation of the numerical results. Besides, the other core aspect
of the research is the investigation of the effect of cardiac properties on arterial pulse
waves, and the explanation of cardiac–related physiological conditions and diseases.
This is accomplished by considering the proper numerical coupling between a heart
model and the arterial systemic circulation model. Starting from the fundamentals
of fluid mechanics, using mathematical, physical and engineering notions, the final
application of this research is indeed intended to make a contribution in the health-
care research, to highlight aspects that may help finding the solution to problems
of great interest in improving human health and quality of life of patients suffering
from serious diseases, as in the case of hypertension.

1.3 Thesis Outline

This PhD Thesis is structured in four main chapters that guide the reader from
a general introduction of the human cardiovascular network to the mathematical
haemodynamic model and the numerical implementation used to obtain in silico re-
sults, to the final application in hypertension.
Chapter 2 presents an overview on the human cardiovascular system. This Chap-
ter gives the necessary background to understand the methodology of the analysis
presented in the following chapters. At first, the composition of vessels is discussed
to highlight the reason why vessels wall cannot be regarded as an elastic material,
but rather a viscoelastic one. Then, properties and features of the arterial system
are presented. Arterial stiffness is discussed, as well as the methodologies usually
followed to estimate it. Pivotal concepts of pulse wave velocity and compliance
are given. Furthermore, the characteristics of pressure and flow in arteries are dis-
cussed and the pulse wave analysis is introduced. With this regard, wave separation
and fiducial points analysis are addressed, and some fundamental haemodynamic
indices are pointed out. Typical invasive and noninvasive techniques to measure
blood pressure and flow rate are also presented. Moreover, an overview on the heart
and the cardiac cycle is given. Finally, hypertension is discussed.
Chapter 3 presents the mathematical background for the haemodynamic model em-
ployed in this Thesis. Firstly, a general introduction is given on the two core aspects
of the haemodynamic model: the mechanics of viscoelastic materials and hyperbolic
balance laws in fluid mechanics. On the one hand, the phenomenological aspects un-
derlying the behaviour of viscoelastic materials, which are indeed shown by arteries
and, at a smaller extend, veins, are discussed. The mathematical models used to sim-
ulate linear viscoelastic materials are presented, in particular the model chosen for
this research, namely the Standard Linear Solid Model. On the other hand, hyper-
bolicity of partial differential equations is defined, as well as the Riemann problem
and corresponding solutions. Then, mass and momentum balance laws are intro-
duced together with the closing equation of the governing mathematical system,
which is a pressure–area relationship called tube law. Thus, the hyperbolic aug-
mented fluid–structure interaction system (a-FSI), which presents a stiff term due
to the viscoelastic contribution, is exhaustively presented. Finally, the mathematics
governing inlet and outlet boundary conditions is introduced.
Chapter 4 presents the numerical scheme employed for the integration in time and
space of the governing system of equations, and the numerical approach proposed



4 Chapter 1. Introduction

for the treatment of boundary conditions. In particular, a second–order Implicit–
Explicit Runge–Kutta Strong–Stability–Preserving method, characterised by three
stages for both the implicit and explicit parts is used for the time integration. This
method fulfils the requirement to be robust and efficient at all levels of stiffness.
For the space integration, a second–order Finite Volume Method is used. Internal
boundary conditions, namely junctions among converging vessels, are numerically
implemented via the proposed Junction Riemann problem, which is a non–linear
system of equations based on a Riemann problem valid at the junction site. This
approach allows the consideration of the viscoelastic contribution of vessels walls
even at the boundary sections of the domain. The criterion used in the Junction Rie-
mann problem is also extended to inlet and outlet boundary conditions for the same
purpose. Trivial 2–vessel tests are performed to validate the numerical implemen-
tation of junctions and test the order of accuracy of the model. The numerical ap-
proach is then applied to a more complex configuration, namely a 3–vessel test, and
eventually to extended arterial networks. Considerations regarding the viscoelastic
response of the vessels walls in the different numerical tests, and therefore the rele-
vancy of the viscoelastic parameters of the Standard Linear Soldi Model, are carried
out.
Chapter 5 presents two applications of the haemodynamic model. The first applica-
tion consists of a computational proof–of–concept on the effect of cardiac properties
on pulse waves in the arterial system. Previous works analysed how variations in ar-
terial, vascular properties, for example due to ageing, affect the afterload and, there-
fore, cardiac dynamics, by means of numerical models accounting for ventricular–
aortic coupling. In this work, the coupling between the heart and the systemic circu-
lation is used for the inverse problem. Arterial pulse waves and meaningful haemo-
dynamic indices are analysed consequently to variations in cardiac parameters to
infer the most significant parameters in influencing haemodynamics in the network.
In addition, the morphology of photoplethysmograph signals, typically measured
in digital arteries and obtainable through smart and fitness devices, or oximeters,
has been studied. Photoplethysmograph signals provide easy–to–acquire data for
screening cardiovascular function during everyday life and thus pose as a useful tool
for a future study of an expanded cohort of subjects. This application offers a first
interesting insight on cardiac dysfunctions detection from arterial pulse waves anal-
ysis. The second application consists of a complementary study of numerical results
and experimental measurements to infer the haemodynamic mechanism underlying
the elevation of pulse pressure in hypertension. The in vivo dataset is exhaustively
presented. This consists of three cohorts of subjects in which central and peripheral
pressure and aortic flow velocity were measured invasively or noninvasively. In vivo
data cover a wide range of physiological conditions, since they comprehend mea-
surements in both normotensive subjects, who also underwent pharmacological in-
tervention to alter their cardiac and vascular conditions, and hypertensive subjects.
In silico, numerical results are obtained by using the haemodynamic model proposed
in this Thesis, and they are firstly validated with in vivo data. Then, the numerical
model is used to investigate the elevation of pulse pressure in hypertension, and
understand the role that cardiac and vascular properties play in this phenomenon.
Characteristics of aortic flow rate waveform and the fiducial points in central and
peripheral pressure waves are analysed when cardiac and vascular properties of
the network are changed independently. Furthermore, wave separation analysis is
used to study two key reflection coefficients containing information on direct and
reflected pressure waves, and how these coefficients change consequently to cardiac
and vascular alterations. All numerical results are backed up by in vivo evidences.
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Finally, Chapter 6 provides a general discussion on the main issues arising from
this Thesis, including considerations regarding the strengths and limitations of the
research, an overview of the key findings, and suggested directions for future work.





7

Chapter 2

The cardiovascular network

2.1 Introduction

The human circulatory system comprises two principal sub–systems, namely the
pulmonary circulation and the systemic circulation. The primary function of the
pulmonary circulation is to exchange gases across the alveolar membrane inside the
lungs, carrying oxygenated blood from the lungs to the left atrium of the heart and
discharging deoxygenated blood from the right ventricle into the lungs. This allows
the carbon dioxide from the systemic circulation to be breathed out. Blood is ejected
from the right ventricle into the pulmonary arteries, and it returns to the left atrium
though the pulmonary veins. The systemic circulation transports the oxygenated
blood to all tissues and organs of the body through the arterial circulatory system,
ejecting it from the left ventricle into the aorta, and it returns the deoxygenated blood
to the right atrium thought the venous circulatory system. This Thesis is predomi-
nantly focused on the arterial circulation, that is thoroughly presented in Section 2.2.
The continuously–working pump of the human cardiovascular system is the heart,
which is presented in Section 2.3, and it guarantees the blood to flow in both the
pulmonary and systemic circulations.

2.1.1 Composition and type of vessels

Vessels walls are anisotropic and heterogeneous tissues, composed of three struc-
tural layers with different biomechanical properties (Tortora and Defrickson, 2013),
whose stress–strain relationships are non–linear and frequency dependent (Alas-
truey, Parker, and Sherwin, 2012). The first layer is the adventitia, which is the
outermost layer primarily consisting of collagen fibres laminated in a spiral fash-
ion (Hoskins, Lawford, and Doyle, 2017). The second layer is the media, which is
formed by smooth muscle cells, elastin sheets layered circumferentially, and colla-
gen fibres. The two proteins, i.e., elastin and collagen, are the main determinants
of the elastic properties of the wall, of which collagen is much stiffer than elastin.
Thus, the viscoleastic properties of arterial walls, and so their mechanical response
to blood pressure, are mainly determined by the ratio of elastin to collage of the
media. This ratio changes depending on the type of blood vessel. Arteries, for ex-
ample, have more collagen and elastin than veins have (Xu and Shi, 2014). Besides
collagen and elastin, Alastruey, Parker, and Sherwin (2012) attributes the presence
of glycoproteins as another likely contributor to much of the viscous behaviour of
the wall. Finally, the intima is the innermost layer. It consists of a very thin base-
ment membrane, which is an elastic lamina, and, immediately underneath, a single
ply of endothelial cells. This, lining the lumen, is in contact with the flowing blood.
(Hoskins, Lawford, and Doyle, 2017; Tortora and Defrickson, 2013). The internal
elastic lamina allows the endothelium to move independently of the media.
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Blood vessels are categorised with respect of their diameters. Arteries, charac-
terised by diameters between 1 and 30 mm, carry the blood ejected from the heart to
the organs and peripheral sites of the systemic circulation. Arteries are followed by
arterioles, with diameters between 10 and 100 µm, and capillaries, with diameters
between 4 and 40 µm. Arterioles have very thick muscular and highly ennervated
walls; the ratio of wall thickness to diameter is ∼ 1 (Formaggia, Quarteroni, and
Veneziani, 2009). Capillaries are characterised by a very thin wall consisting of only
endothelium and basement membrane, and they are generally found in skin and
muscles, being responsible for the bulk of exchange between blood and the various
tissues. Venules, with diameters ranging from 10 to 200 µm, have all three layers but
their wall is much thinner than arterioles with almost absent media layer. Finally,
veins, with diameters from 1 to 25 mm, return blood to the heart. The venous sys-
tem operates at a lower pressure than the arterial system and consequently the veins
wall thickness is less than that of arteries.

2.2 The arterial system

This Thesis prevalently focuses on the modelling and analysis of the arterial
systemic circulation. Therefore, this Section provides concepts of physiology and
biomechanics of the arterial system.

Arteries carry blood from the the heart to the peripheral sites of the network. Sys-
temic arteries undergo relatively high pressures and they are, therefore, composed
of thick walls consisting of the three layers described in Section 2.1.1, i.e., adven-
titia, media, and intima. Arteries are classified in elastic and muscular depending
on the wall composition (Hoskins, Lawford, and Doyle, 2017; Davies et al., 2012;
Mynard et al., 2020; Kondiboyina et al., 2022). Elastic arteries such as the aorta and
its major branches are low resistance vessels and have a high elastin to collagen ra-
tio, resulting in high distensibility. Therefore, central arteries are able to reserve the
volume ejected from the heart and enable the storage of energy. Peripheral, distal
arteries, namely the arteries that supply blood to organs and those in the limbs, are
muscular in nature. Muscular arteries present a thicker media layer characterised
by less elastin and more smooth muscle cells than those present in the elastic ar-
teries, and they have a larger wall–thickness to diameter ratio (Alastruey, Parker,
and Sherwin, 2012). The smooth muscle cells in the peripheral arteries can change
the luminal area (vasomotion) to regulate peripheral blood flow and satisfy the local
instantaneous metabolic needs.

2.2.1 Stiffness of arteries

From the mechanical point of view, the two most important constituents of arte-
rial walls are elastin, providing elasticity, and collagen, providing strength, whose
molecules unfold when the artery expands. When elastin and collagen fibres reach
their straightened length, they become extremely stiff.

The stress–strain relationship of an artery is generally represented in pressure–
diameter, or pressure–area plots, and it displays a widening pressure–area loop
caused by the dissipation of energy during dilation and contraction cycles (Valdez-
Jasso et al., 2009; Raghu et al., 2011; Salvi, 2012; Battista, 2015). This phenomenon,
typical of viscoelastic materials, is due in particular to the composition of arterial
walls in elastic and collagen, and the loop widening depends on the proportion of
these two components. In the unstretched configuration and at small distensions,
the collagen fibres are quite folded and the mechanical behaviour is dominated by
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the elastin, whereas at high extensions the collagen fibres have straightened out,
dominating the mechanical behaviour of the artery and conferring stiffness. Smooth
muscle cells contract and relax under neural and hormonal control (vasomotor con-
trol), actively affecting arterial stiffness and playing an important role in the vis-
coelastic damping of the pulse wave (Armentano et al., 2007; Alastruey, Parker, and
Sherwin, 2012). As arteries are composed of a multi–layer structure and each layer
has specific mechanical properties, the characterisation of the coefficients related to
these properties assumes the utmost relevancy to describe the rheological behaviour
of the arterial wall. The composite behaviour of the arterial wall can be portrayed by
using viscoelastc models that define a time–varying Young modulus and a viscos-
ity coefficient to account for the mechanical behaviour of the wall when undergoing
pressure pulses. For instance, in this Thesis a three–parameter viscoelstic model is
used and it is thoroughly addressed in Chapter 3. Such models generally assume
that the artery is uniform and homogeneous, i.e., the wall thickness and mechanical
composition are the same for different positions around the circumference.

Pulse wave velocity

To estimate arterial stiffness, or arterial distensibility, several methods are pre-
sented in the literature and usually employed in clinical practice. One of these meth-
ods is given by the measurement of the pulse wave velocity (PWV). PWV–based
models to define arterial distensibility are called propagative models (Salvi, 2012).
Indeed, a pulse wave is transmitted throughout the vessels of the arterial network,
and its speed, also called celerity of the wave, is related to the viscoelastic properties
of the vessel wall itself. Specifically, the stiffer the wall, the higher the pulse wave
velocity (Salvi, 2012).

PWV cannot be misunderstood with blood flow velocity. The former travels at
about two orders of magnitude more than the latter, i.e., m/s for PWV versus cm/s
for blood flow velocity. Blood flow velocity also changes in the cardiac cycle (Salvi,
2012). PWV can be assessed measuring simultaneously the pressure waveform at
two different sites in the arterial tree, a proximal site and a distal, peripheral one.
This enables to calculate the time delay between the pressure waveforms in the two
sites, generally considering the “feet" of the pressure waveforms at early–systole.
Knowing the distance between the two sites, the PWV is simply calculated as the
distance to time delay ratio (Salvi, 2012; Mariscal-Harana et al., 2021). This method is
known as the foot–to–foot method. The most frequent sites where pressure is measured
are at the carotid and femoral arteries due to the possibility to perform noninvasive
measurements. The foot–to–foot method can also be used considering blood flow
velocity instead of blood pressure, at the aortic arch and in the abdominal aorta
(Gaddum et al., 2013). Other methods have been presented in the literature to obtain
PWV, such as the sum of squares method, which allows to calculate the PWV using
simultaneous measurements of blood pressure and velocity at a single site of the
arterial network (Davies et al., 2006; Parker, 2009; Abdessalem, Flaud, and Zobaidi,
2018; Mariscal-Harana et al., 2021), the least squares differencing method (Gaddum et
al., 2013; Mariscal-Harana et al., 2021), and the cross–correlation method (Gaddum et
al., 2013).

The increase of PWV with ageing is a well established phenomenon (Salvi, 2012;
Charlton et al., 2019). During the ageing process, the arterial wall undergoes histo-
logical alterations characterised by the degeneration of elastin fibres and a boost in
collagen fibres, therefore increasing stiffness. The increase in PWV with ageing is
not linear, being faster as age advances.
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Arterial compliance

Generally speaking, the mechanical properties of a blood vessel are not linear, as
they depend on the pressure they are subjected to and at which they are measured.
Several haemodynamic parameters can be used for assessing the mechanical prop-
erties of arteries and investigating their viscoelastic properties. One of these is the
arterial compliance, which is defined as the change in diameter (or section) of the
artery in absolute value, at a given pressure level, for a given arterial length (Salvi,
2012). Therefore, compliance can be seen as the ratio between change in volume
and change in pressure of a specific arterial segment. Extending this concept to the
whole arterial network, the total systemic arterial compliance is defined as the ability
of the arterial system to distend with increasing blood pressure (Alastruey, Parker,
and Sherwin, 2012). The total systemic arterial compliance is prevalently located in
the most elastic systemic arteries, namely along the aorta. When the vessel wall is
characterised by high elasticity, small changes in pressure cause significant varia-
tions in volume. Otherwise, when the arterial wall is stiff, the distensibility of the
vessel diminishes and significant changes in pressure cause small variations in vol-
ume. Hence, compliance decreases with increasing stiffness, and therefore ageing is
a cause of compliance loss. Compliance–based models to infer arterial distensibility
are called nonpropagative models (Salvi, 2012).

Several methods have been presented in the literature to calculate the arterial
compliance. The direct application of the afore–given definition of compliance re-
sults in calculating this haemodynamic parameter as the ratio between stroke vol-
ume (SV), i.e., the total volume ejected from the left ventricle in one cardiac cy-
cle, and aortic pulse pressure (PP), which is the difference between the maximum
and minimum pressure values (Mariscal-Harana et al., 2021). Although the SV/PP
method represents a first, simple approach to obtain arterial compliance, its valid-
ity and accuracy has been proved (Chemla et al., 1998). Another method to com-
pute compliance is the diastolic decay fitting method (Frank, 1990), in which blood
pressure wave is analysed between the time when the aortic valve closes, usually
coinciding with the so–called dicrotic notch in the blood pressure (BP) waveform,
and the end of diastole. Indeed, the occurrence of the dicrotic notch distinguishes
the heart period in two parts, namely the systole, which starts from the time of
the onset of the pulse wave until the dicrotic notch time, and the diastole, from
the dicrotic notch time until the end of the heart period. The best fit between the
diastolic tract of the pressure wave and an exponential decay curve of the form
pexp = pout + (pexp(t0) − pout)e(t−t0)/τ, with t0 the time of the dicrotic notch and
pout the outflow vascular BP, is found by using a minimization algorithm (Mariscal-
Harana et al., 2021). τ is the parameter measuring compliance. Other methods to
compute compliance are the area or two–area methods, which are based on solving in-
tegrals of pressure or pressure and flow rate, respectively, in–between specific times
in the cardiac cycle (Randall et al., 1976; Chemla et al., 1998; Westerhof, Lankhaar,
and Westerhof, 2009; Mariscal-Harana et al., 2021), and the iterative methods based on
the minimization of the relative error between the reference and estimated values of
either diastolic blood pressure (DBP) or PP (Stergiopulos, Meister, and Westerhof,
1994; Westerhof, Lankhaar, and Westerhof, 2009; Mariscal-Harana et al., 2021).

Arterial compliance and pulse wave velocity of each vessel are related via a
mathematical equation, i.e.,

C =
Al

ρ(PWV)2 , (2.2.1)
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where A is the luminal area of the vessel, l is the vessel length, and ρ is the blood
flow density (Xiao, Alastruey, and Figueroa, 2014).

2.2.2 Pressure and flow in arteries

Pressure in the systemic arterial network is driven by the cardiac action and the
characteristics of the arterial walls. When the heart ejects the stroke volume from the
left ventricle into the aorta, this latter expands and the pressure rises.

Arterial pressure is characterised by a pulsatile behaviour, fluctuating periodi-
cally between two extreme pressure values with each cardiac cycle. These extreme
values are the systolic (SBP) and diastolic (DBP) blood pressure, where SBP is the
maximum value, and DBP is the minimum value of the BP waveform. The differ-
ence between these two values is the well-known pulse pressure (PP),

PP = SBP − DBP. (2.2.2)

Hence, PP represents the variation in pressure above the minimum arterial pressure
and defines the pulsatile component of BP (Darne et al., 1989; Salvi, 2012; Hoskins,
Lawford, and Doyle, 2017). Cardiologists are taught that SBP reflects the cardiac
output and the distensibility of the arteries, whereas DBP depends upon the state
of the peripheral vessels, and PP is proportional to the stroke volume and inversely
proportional to arterial compliance (Formaggia, Quarteroni, and Veneziani, 2009).
PP increases with increasing distance from the ejection site due to the stiffening of
the arteries, namely towards the peripheral arteries. The pulsatile component of
pressure depends on the wave generated by the interaction between the left ventri-
cle and the aortic root, the mechanical properties of the arteries, and the reflected
waves (Darne et al., 1989; Salvi, 2012). Therefore, PP is a haemodynamic measure
that can be used to estimate arterial distensibility, as presented in Section 2.2.1, and
infer pressure–related pathologies and cardiovascular risk (Vennin et al., 2017; Flores
Gerónimo et al., 2021).

Given BP variability between SBP and DBP and its periodic behaviour over the
cardiac cycle, T, it is useful to define the mean arterial pressure (MAP), which is
typically though of as the steady component of pressure (Darne et al., 1989; Salvi,
2012; Hoskins, Lawford, and Doyle, 2017). From the mathematical point of view,
MAP is defined as the integral of blood pressure, p(t), over the cardiac cycle, namely

MAP =
1
T

∫ T

0
p(t)dt. (2.2.3)

In the clinical practice Eq. (2.2.3) is not of easy–to–use. In clinical practice MAP is
often calculated from PP (and vice–versa) by using the formula

MAP = DBP +
PP
3

. (2.2.4)

which is a crude approximation of the time–average arterial pressure assuming that
the pressure waveform is triangular (Formaggia, Quarteroni, and Veneziani, 2009).
Indeed, Eq. (2.2.4) is the simplification of the mathematical definition of MAP ex-
pressed by Eq. (2.2.3).

As expressed by Eq. (2.2.4), MAP and PP are two distinct but interdependent ar-
terial pressure quantities, so MAP, like PP, can be used as an indicator of cardiovas-
cular risk due to its dependence on cardiac and vascular parameters. In fact, MAP
can also be calculated knowing two haemodynamic parameters, namely the cardiac
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FIGURE 2.1: Hydraulic–electric analogy. A simple electric circuit (left), the
schematic systemic circulation system model (right).

output (CO) and the systemic vascular resistance (SVR), through the equation

MAP = CO · SVR. (2.2.5)

The cardiac output is given by the product of two other cardiac quantities, namely
the stroke volume (SV) and heart rate (HR), CO = SV · HR. Thus, Eq. (2.2.5) becomes

MAP = SV · HR · SVR. (2.2.6)

Heart–related quantities, i.e., SV, HR, and CO, will be exhaustively presented in Sec-
tion 2.3.1. When calculated with Eq. (2.2.6), MAP is considered to be an approxi-
mately constant value throughout the arterial system (Salvi, 2012).

It is worth highlighting the relationship that holds true between blood pressure
and flow. Indeed, in Eq. (2.2.5) MAP depends on CO, which is the total volume
ejected from the heart per unit of time, therefore it has the units of a flow rate. This
relationship is validated and explained recurring to the hydraulic–electric analogy
(Formaggia, Quarteroni, and Veneziani, 2009; Salvi, 2012), according to which the
human hydraulic circuit – composed of a pump (the heart) with a rhythmic activity,
and tubes (vessels) with flowing liquid (blood) – can be associated to an electric
circuit (Figure 2.1). According to Ohm’s law, the potential difference between the
extreme points of an electric circuit (∆V = V1 − V2) is obtained by multiplying the
current (I) by the resistance of the circuit (RΩ),

∆V = I · RΩ. (2.2.7)

Eq. (2.2.5) is derived directly from Eq. (2.2.7) where the potential difference can be
thought of as the difference in blood pressure between the extreme points of the cir-
culation, ∆P = P1 − P2. However, assuming that P2 is much smaller than P1, since it
represents the venous pressure, and considering the time–averaged blood pressure
over the cardiac cycle, ∆P is de facto MAP. Finally, CO represents the current, I, and
SVR represents the resistance of the circuit, RΩ (Salvi, 2012). Hence, the underly-
ing analogy lies in considering the pressure as the voltage and the flow rate as the
current, as shown in Figure 2.1, and expressed by Eq. (2.2.5) and Eq. (2.2.7).

The hydraulic–electric analogy is at the base of the so–called lumped–parameter,
or zero–dimensional (0-D) models, which allows the computation of blood pressure
and flow by splitting the cardivoascular system into a set of compartments regulated
by the typical laws of electric circuits. The circuit represented in Figure 2.1, which
shows only a resistance–type compartment, is an extreme simplification of a 0-D
model, because the number and kind of compartments considered varies depending
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on the type of analysis at hand (Formaggia, Quarteroni, and Veneziani, 2009). 0-D
models simulating the systemic circulation usually considers, besides the resistance–
type compartment, also capacitance– and inductance–type compartments (Kokalari,
Karaja, and Guerrisi, 2013; Segers et al., 2003; Vennin et al., 2017; Civilla et al., 2021).
In the electric network analogy, all these three compartments are assimilated to the
characteristics of blood flow or compliant vessels. The resistance, R, represents the
resistance induced to the flow by blood viscosity, the inductance, L, is assimilated
to blood inertia, and the capacitance, C, represents the mass storage and so it is
assimilated to the wall compliance (Formaggia, Quarteroni, and Veneziani, 2009). In
their general formulation, these parameters relate pressure p with flow rate q and
read as

p = Rq, Ldq
dt

= p, C
dp
dt

= q. (2.2.8)

In this Thesis, 0-D models are used to simulate specific sections of the cardiovascular
network model, namely the cardiac contraction model and micro-circulation.

Most arteries experience biphasic flow waveforms with a small amount of back-
ward flow occurring in late systole and early diastole. Blood flow can be described
by two non–dimensional parameters, namely the Reynolds and the Womersley num-
bers. The Reynolds number, Re, in an internal flow of mean sectional velocity u
within a pipe or vessel of characteristic diameter D is given by

Re =
ρDu

µ
, (2.2.9)

where µ is the dynamic viscosity of the Newtonian fluid. From the physical point of
view, the Reynolds number can be thought of as the ratio of inertial forces to viscous
forces. Thus, when the Reynolds number is large, the inertial forces are dominant
over viscous forces, and vice–versa. The Reynolds number is the key parameter
that identifies the transition of the flow to turbulence (Formaggia, Quarteroni, and
Veneziani, 2009). The Womersley number is used when considering unsteady flow
and is defined as (Womersley, 1955)

Wo =
D
2

√
2π

νT
, (2.2.10)

where ν = µ/ρ is the blood cinematic viscosity, and T is taken as the fundamental
period of the oscillatory flow, which corresponds, in the case of blood flow, to the
cardiac cycle duration. The Womersley number is considered as the frequency pa-
rameter of the flow. From the physics point of view, the Womersley number can be
regarded as the ratio of pipe diameter to the laminar boundary layer growth over
the pulse period T (Formaggia, Quarteroni, and Veneziani, 2009). The Reynolds
number and the Womersley number profoundly change throughout the arterial cir-
culation, becoming much lower than unity in the micro-circulation. In the ascending
aorta, the Reynolds number is typically 4000 and the Womersley number is 10.5, in
the small arteries they become 100 and 1.4, respectively, and 0.5 and 0.014 in arteri-
oles. In particular, low Reynolds numbers in the micro-circulation imply that viscous
forces completely dominate any inertial forces in the flow (Formaggia, Quarteroni,
and Veneziani, 2009). This means that almost all of the pressure head losses in the
circulation occur in the micro-circulation. As in normal physiological condition the
Reynolds numbers based on mean velocities are generally well below 2000 through
most of the system (Zamir, 2000), blood flow is assumed to be laminar (Alastruey,
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Parker, and Sherwin, 2012; Charlton et al., 2018; Mitsotakis et al., 2019). Turbulence
may occur, as said, in the ascending aorta where the flow can be highly disturbed
during peak ejection, with peak Reynolds numbers through the aortic valve close to
10000 (Seed and Wood, 1971; Stein and Sabbah, 1976), and at other locations under
some disease states such as luminal narrowing (stenosis) and abnormal aortic valves
(Stein and Sabbah, 1976).

2.2.3 Pulse wave analysis

Pulse wave analysis is the branch of computational haemodynamics that aids the
understanding of BP pulse waves to extract clinically–relevant information. Pulse
wave analysis is greatly useful for the study of in vivo BP measurement. In fact,
while in silico, numerical results rely on an accurate and a–priori knowledge of all
the physical properties of the haemodynamic system, in vivo studies have far less
data available. Moreover, the characterisation of blood pressure by means of only
two extreme values, namely the systolic and diastolic blood pressures, neglects the
myriad of information that is embodied in the shape of the pressure waveform.
Under normal conditions, a wave generated by the contraction of the heart propa-
gates throughout the arterial system, generating reflections whenever they encounter
a discontinuity in the geometrical or mechanical properties of the arteries (Formag-
gia, Quarteroni, and Veneziani, 2009; Mynard et al., 2020). Bifurcations, high re-
sistance regions, and sites of change in arterial viscoelasticity can give rise to re-
flections that propagate back towards the heart. These waves, travelling back and
encountering other bifurcations, give rise to a very complex pattern of reflected and
re–reflected waves that determine the local pressure and velocity waveforms in the
arteries.
With pulse wave analysis, characteristic features of the pressure waveforms are ob-
tained and inferences about wave dynamics are made on the bases of theoretical,
model–based links with functional properties of the cardiovascular system. Pulse
wave analysis is of utmost importance to study the onset and progression of cardio-
vascular diseases like hypertension, evaluate ageing predictors, and infer the rela-
tionship between BP pulse waves measured in different sites of the arterial network
(Mynard et al., 2020; Nichols et al., 2011). Several methods have been developed for
the analysis of in vivo data in both the time and frequency domain. In this Section,
pulse wave analysis tools that allow to separate the pulse waveform into physically
relevant components, and estimate clinically relevant parameters will be discussed.

Wave separation

Wave separation technique is frequently employed in pulse wave analysis, as it
provides quantitative information about forward and backward waves by decom-
posing the pressure waveform p into two separate signals using principles of fluid
dynamics in compliant tubes (Parker, 2009), allowing an exhaustive study of waves
phenomena. The forward component of pressure, p f , quantifies the direct (incident)
contribution to BP wave, whereas the backward component of pressure, pb, quanti-
fies the reflected contribution to BP wave (Figure 2.2). Wave separation only quan-
tifies these two components, being agnostic to the haemodynamic mechanism that
give rise to forward or backward waves. Therefore, to investigate this mechanism,
model–based analyses or experimental inferences must be conducted.

By using measured pressure and flow waveforms, p and q respectively, pressure
wave separation, originally described by Westerhof et al. (1972), is obtained with the
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FIGURE 2.3: Schematic representation of the central blood pressure
wave with the first (P1) and second (P2) central systolic peaks (upper
row), and the peripheral blood pressure wave with the first (pSBP)
and second (pSBP2) peripheral systolic blood pressures (lower row).
P1 is the determinant of pSBP, P2 is determinant of pSBP2. Cen-
tral pulse pressure (cPP) is the difference between the central systolic
blood pressure and diastolic blood pressure (DBP); peripheral pulse

pressure (pPP) is the difference between pSBP and DBP.

usually identified with local and absolute pressure peaks and inflection points ob-
served on BP waves. Fiducial points of the central BP wave are strongly related to
those of the peripheral BP wave (Figure 2.3). Two main fiducial points can be iden-
tified in the central (aortic or carotid) BP wave. These are called the first and second
central systolic peak, and are usually labelled as P1 and P2, respectively. It is always
true that the time of occurrence of P1 is smaller than that of P2, namely tP1 < tP2. P1
and P2 can be either the central BP peak or an inflection point, and their characteri-
sation typically depends on the age of the subject in which they are estimated. In the
elderly, P1 is a “shoulder–shaped" inflection point identifying the time when the for-
ward and backward waves meet (Li et al., 2021; Salvi, 2012), and P2 corresponds to
the central systolic blood pressure (cSBP), therefore being the absolute pressure peak
(Chirinos et al., 2009; Li et al., 2021). In this case, namely when P1 < P2 = cSBP, the
waveform is categorised as Type A according to the waveforms classification intro-
duces by Murgo et al. (1980). Contrarily, in younger subjects P1 corresponds to the
cSBP and P2 is an inflection point occurring later in time, namely P1 = cSBP > P2.
In this case the waveform is categorised as Type C (Murgo et al., 1980). Peripheral
fiducial points depend on P1 and P2 of the central BP wave. The first peripheral
systolic blood pressure (pSBP), which is used as an index to assess clinical risk re-
lated to hypertension and to guide clinical care, is proven to be determined by P1 in
the central BP wave, whereas the second peripheral systolic blood pressure (pSBP2)
is determined by P2 in the central BP wave (Li et al., 2021), consistently with the
concept that a central wave component arises earlier within the cardiac cycle than
the peripheral wave component it generates. Finally, the afore–mentioned dicrotic
notch is a fiducial point able to provide information on the left ventricular ejection
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timing, in fact it corresponds to the closure of the aortic valve. This is a local mini-
mum of the BP wave occurring after the SBP. The dicrotic notch is more evident in
central arteries, that are closer to the ejection site, than in peripheral arteries.

Secondary fiducial points for central and peripheral BP waves have been pre-
sented and defined by Charlton et al. (2019), who have also detailed fiducial points
identifiable on the photoplethysmogram (PPG) pulse waves. Photoplethysmogra-
phy is a widely–used, noninvasive measurement technique that aids remote cardio-
vascular monitoring, containing information on ventricular function and ventricular–
vascular interaction, and provides a wealth of information on the onset of diseases
and mechanical cardiac activity (Nichols et al., 2011). The recording site is remote
from the heart. Commonly, PPG signals are measured at the periphery of a limb,
like the wrist or finger, and they are widely measured by pulse oximeters and con-
sumer devises, as smart watches. Photoplethysmographic traces are very similar
to pressure waves recorded in the carotid artery and bear a like relationship to the
ascending aortic pressure wave. It must be recognised, however, that PPG pulse
waves do not record pressure, but the volume change in multiple small arterial ves-
sels (Nichols et al., 2011; Charlton et al., 2019). Pulse wave analysis applied to PPG
signals provides a myriad of clinically–relevant information. To name a few, PPG
pulse waves contain information on the heart rate, pulse wave variability, respira-
tory rate, arterial blood oxygen saturation, vascular age, and left ventricular ejec-
tion time. Moreover, it can detect atrial fibrillation, identify obstructive sleep apnea,
monitor the spread of infection diseases and sleep, assess mental stress and response
to exercise, and predict information on cardiovascular risk (Sabry et al., 2022; Charl-
ton et al., 2018; Charlton et al., 2022)

Pulse waveforms indices

A multitude of indices providing information on direct and reflected BP waves
can be obtained through the pulse wave analysis. The most important one is the
augmentation index (AIx), which offers an indication of the incidence of reflected
waves on the total pulse pressure. The contribution of the backward wave on the
total BP wave is related to both its early superimposition onto the forward wave
and the magnitude and distribution of the reflected wave. AIx is calculated as the
ratio between the augmented blood pressure (ABP) due to the reflected waves, with
ABP = P2 - P1 of the central BP wave, and PP (Li et al., 2021),

AIx =
P2 − P1

PP
× 100. (2.2.14)

Consequently, AIx is positive when cSBP corresponds to P2 and is greater than P1,
hence typically in the elderly subject, otherwise, AIx is negative when cSBP corre-
sponds to P1 and is greater than P2, which occurs generally in the younger subject
(Salvi, 2012). AIx is conditioned by several biomechanical interactions. Factors af-
fecting AIx are both vascular and cardiac, such as arterial stiffness, the magnitude
and variability in reflected waves in relation to systemic vascular resistances, cardiac
contractility and relaxation properties, ventricular outflow patterns, heart rate, and
forward waves. AIx is also driven by subject height (distance of reflections sites) and
sex (McEniery et al., 2005; Mynard et al., 2020). Given the several factors affecting
AIx, one could question if wave reflection is indeed the primary driver for systolic
augmentation. However, a key principal of fluid dynamics in elastic tubes is that in
the absence of wave reflection pressure and flow waveforms will be identical, albeit
scaled by characteristic impedance Zc, as introduced in Section 2.2.3. Therefore, any



18 Chapter 2. The cardiovascular network

difference between these waveforms must be ascribed to wave reflection (Parker,
2009; Westerhof and Westerhof, 2017). O’Rourke and Mancia (1999) reasonably de-
fined AIx as the “manifestation" of early wave reflection, but not its measure. Thus,
although AIx is a very useful marker of cardiovascular risk (Nürnberger et al., 2002;
Weber et al., 2004; Weber et al., 2010), its limitation related to the quantification of the
biomechanical phenomenon of wave reflection should not be overlooked (Mynard
et al., 2020).

As previously mentioned, PP increases as the distance of the pulse wave from
the ejection site increases. This phenomenon is called pulse pressure amplification,
and it is mainly traced back to the presence of blood pressure reflected waves in the
periphery of the circulation, namely near reflection sites (radial, brachial, femoral
arteries, etc.). Under undamaged viscoealstic properties of the arterial wall, back-
ward, reflected waves superimpose onto forward, direct waves prevalently in early–
systole. On the contrary, in central sites like the ascending aorta, backward waves
arrive later in time, and they superimpose onto the forward waves prevalently dur-
ing late–systole. Therefore, the determination of PP in central site is only marginally
caused by the presence of reflected waves (Salvi, 2012). Different approaches have
been proposed to quantify PP amplification. The simplest approach consists in the
measurement of the difference, in absolute values, between the peripheral SBP and
the central SBP. Alternatively, a measure of the PP amplification can be obtained by
calculating the ratio of central (cPP) to peripheral (pPP) pulse pressure. Likewise,
the pulse pressure augmentation ratio (AR) is defined by the percentage increase in
pulse pressure between the peripheral site and the central site (McEniery et al., 2005;
Salvi, 2012; Li et al., 2021),

AR =
cPP − pPP

cPP
× 100. (2.2.15)

Another meaningful characteristic of the central BP wave that can be studied
with pulse wave analysis is the rate of rise in early–systole, namely the portion of
the waveform from the foot to the first inflection point, P1. This index is thought
of to relate mainly to the incident or forward–travelling pressure wave, namely the
pressure arising from the natural overflow of the ventricle. Therefore, this index is
a indirect measure of the contractility of the heart (De Hert et al., 2006; Morimont
et al., 2012; Li et al., 2021).

2.2.4 Measurements of pressure and velocity waveforms

Numerical models based on computational haemodynamics are a useful tool to
study blood flow dynamics and investigate the related diseases. However, to val-
idate these models and to test the reliability of in silico results, in vivo data are of
utmost importance. Different techniques can be employed to measure haemody-
namics quantities, namely blood pressure, blood flow rate and velocity, and luminal
areas of the vessels. Measurement techniques can be either invasive or noninvasive.
The latter, being more accessible and easily–obtainable, are usually performed in su-
perficial arteries such as the carotid, brachial, radial, and femoral arteries (Nichols
et al., 2011).

Blood pressure can be recorded noninvasively in superficial arteries using ap-
planation tonometry (Armentano et al., 1995a; Zambanini et al., 2005; Reymond et
al., 2009; Vermeersch et al., 2009; Valdez-Jasso et al., 2011; Reymond et al., 2011) or
the volume–clamp method (Peñáz, 1973). Applanation tonometry involves “appla-
nating" a superficial artery with a pen–like pressure transducer (Drzewieck, Melbin,
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and Noordegraaf, 1983; Kelly, 1989; Hoskins, Lawford, and Doyle, 2017), which
requires a good dexterity and experience. The obstacle of operator dependency
could be potentially avoided by using wearable devices (Garcia-Ortiz et al., 2012),
although attaining and maintaining correct sensor position is a key challenge. Cali-
bration of the pulse waveform is generally performed with brachial cuff pressures,
which may involve errors related to the cuff pressure inaccuracies and pulse am-
plification from brachial to the site of measurement (Verbeke et al., 2005; Picone et
al., 2017). The volume–clamp method, then refined and commercialised as the Fi-
napress (Wesseling, 1995; Munir et al., 2008; Guilcher et al., 2011), involves a finger
cuff whose air pressure is controlled by a servo that clamps the volume of the fin-
ger arteries using an infrared photoplethysmography signal. This method provides
high fidelity waveform, and has the benefit of self–calibration (Mynard et al., 2020).
Compared to the volume–clamp method, tonometry is more trivial, involves less
discomfort, and can be applied to a wide range of arterial sites.

Invasive pressure measurements can be obtained in the aorta and other extra–
cranial arteries using pressure– and flow–sensing catheters (Davies et al., 2006).
Among these, micromanometer–tipped catheter provide for a high fidelity wave-
form due to an excellent frequency response, but they are expensive. Fluid–filled
catheter, on the other hand, are cheaper but the frequency response can be poor
(Nichols et al., 2011; Mynard et al., 2020).

Blood flow rate and velocity are two distinct physical quantities that both involve
challenges in accurate measurement. The former refers to the volumetric transport
of fluid and is defined over a given arterial cross–section, whereas blood velocity
refers to the speed of a moving particle of blood, therefore varying over an arterial
cross–section and producing a ‘velocity profile’. The profile is typically assumed to
be parabolic, which is valid for cylindrical tubes with constant flow. Clearly, this
is a simplification of the more complex profile that flow velocity exhibits in curved
arteries and with pulsatile flow (Womersley, 1955; Sigovan et al., 2011; Mynard and
Steinman, 2012). Blood flow velocity decreases towards the peripheral arteries and
the micro-circulation. Indeed, the arterial network is a bifurcating system, so the
total flow rate at each level in the systemic circulation remains constant. When the
total cross–sectional area of vessels increases, the mean velocity decreases. Perivas-
cular flow probes using transit–time ultrasound methods are considered the gold–
standard for invasive flow measurement (Mynard et al., 2020), albeit their use tends
to be limited to the clinical assessment of bypass grafts. Blood velocity and flow
(including the cardiac output) can also be measured noninvasively with time using
Doppler ultrasound (Oates, 2001; Vermeersch et al., 2009; Bertaglia et al., 2020) and
magnetic resonance imaging (MRI) (Ibrahim et al., 2010; Reymond et al., 2009; Rey-
mond et al., 2011). Whereas MRI is relatively expensive and most suited to imaging
central vessels, Doppler ultrasound is inexpensive and more suited to imaging pe-
ripheral arteries (Mynard et al., 2020).

Finally, the internal luminal area can be measured in superficial arteries using
ultrasound–based echo–tracking (Levenson et al., 1981; Armentano et al., 1995b;
Valdez-Jasso et al., 2011) and MRI (Ibrahim et al., 2010).

2.3 The heart

The heart is a muscular organ comprised almost entirely of myocardium, which
is a tissue composed of specialised muscle cells (cardiomyocytes) that differ from
other muscle cells in their contractility (lower) and their resistance to fatigue (much
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FIGURE 2.4: Sketch of a cross section of the heart showing the gross
anatomy. Chambers: LA, left atrium; LV, left ventricle; RA, right
atrium; RV, right ventricle. Vessels: Ao, aorta, PA, pulmonary artery;
PV, pulmonary veins; SVC, superior vena cava; IVC, inferior vena
cava. Valves: AV, aortic valve; MV, mitral valve; PV, pulmonary
valve; TV, tricuspid valve. LA is supplied by veins from the lungs,
i.e., PV, and transfers blood into the LV through the mitral valve.
LV ejects blood into the aorta through the aortic valve. RA collects
blood from the venous systemic circulation from superior and infe-
rior venae cavae, and transfers blood into the RV through the tricus-
pid valve. RV ejects blood into the pulmonary artery thorough the

pulmonary valve.

higher) (Formaggia, Quarteroni, and Veneziani, 2009). The heart is surrounded by
the pericardium, a serous, inelastic membrane that restricts excessive dilation of the
heart and can limit ventricular filling. The heart is composed of four chambers,
namely the left and right ventricles, and the left and right atria. The left ventricle is
the largest chamber with the thickest walls, and is located posteriorly and leftwards
from the right ventricle, which can be thought of as a chamber wrapped around
the right side of the left ventricle from the heart base to the apex (Formaggia, Quar-
teroni, and Veneziani, 2009). The flow across these chambers is regulated by four
valves, namely the mitral valve (MV), separating the left atrium (LA) from the left
ventricle (LV) and preventing the blood to flow back from the LV to the LA, the aortic
valve (AV), controlling the blood flow ejected from the LV into the aorta, the major
systemic artery. The MV has two leaflets and is prevented from prolapsing by chor-
dae tendons and papillary muscles running from the cusps of the valve leaflets to the
side of the LV. The AV has three simple leaflets that are inserted into the walls of the
sinuses of Valsalva, which are roughly hemispherical bulges at the root of the aorta.
The AV leaflets are devoid of any attachments and provide mutual support when
they are closed (Formaggia, Quarteroni, and Veneziani, 2009). In the right side of the
heart, the corresponding valves are the tricuspid (TV) and pulmonary (PV) valves,
which govern the flow from the right atrium (RA) into the right ventricle (RV), and
that from the RV into the pulmonary arteries, respectively. An illustration of the
heart is presented in Figure 2.4. The left and right parts of the heart operate as two
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FIGURE 2.5: Schematic representation of the pressure (pLV)–volume
(vLV) loop for the left ventricle (LV). SE: systolic ejection; IsR: isovol-
umetric relaxation; VF: ventricular filling; IsC: isovolumetric contrac-
tion; EDV, EDP: end diastolic volume and pressure; ESV, ESP: end

systolic volume and pressure; SV: stroke volume.

synchronised pumps in parallel: the left side collects oxygenated blood from the pul-
monary veins and perfuses the body through the systemic arteries, while the right
side collects deoxygenated blood from the systemic veins and perfuses the lunges
through the pulmonary arteries. The dynamics of the heart can be summarised in
two main phases. During contraction, the first phase, the heart ejects blood from the
ventricles into the respective circulations, hence AV and PV are open and MV and
TV are closed. During relaxation, the second phase, atria fill with blood returning
via the venous circulations, hence AV and PV are closed while MV and TV are open.

This Thesis will focus on the description and modelling of the left part of the
heart, namely starting from the pulmonary venous flow rate to the ejection of blood
at the aortic root.

2.3.1 The cardiac cycle

The heart beat is a two–stage pumping action over a period of about 1 s. Sys-
tole is defined as the period during which the myocardium contracts and blood is
ejected from the ventricle. Two ways to characterise systole are used in clinical prac-
tice: cardiologists identify the action of the myocardium through the electrocardio-
graph (ECG), whereas vascular doctors identify systole as the period between the
closure of the mitral valve and the subsequent closure of the aortic valve. These two
approaches give very similar results. Analogously, diastole is defined either as the
period when the myocardium relaxes or the period between the closing of the aortic
valve and the closing of the mitral valve. At rest, diastole lasts approximately two
thirds of the cardiac period, while with increasing heart rate the diastole shortens
and systole remains the same duration, and at maximal heart rate the systole is also
shortened (Formaggia, Quarteroni, and Veneziani, 2009).

The ventricular activity is defined by four distinct phases distinguished by the
states of the inlet and outlet valves (Figure 2.5). The isovolumetric contraction (IsC)
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phase occurs when both mitral and aortic valves are closed and the myocardium is
contracting. During IsC, the pressure in the LV increases rapidly, exceeding the LA
pressure and causing retrograde flow through the mitral valve, and so the closing of
the valve itself. The volume in the LV remains unaltered as the blood is incompress-
ible, but it undergoes a significant change in shape as the myocardium contracts.

The ventricular or systolic ejection (SE) phase starts when the pressure in the LV
exceeds that in the aorta, and the aortic valve opens. The aortic pressure rises and the
vessel expands due to the ejection of blood from the heart. The pressure difference
between the LV and the aorta remains negative1 as long as the myocardium contracts
quickly enough so that the flow into the aorta continues to accelerate up to the peak
flow.

After this rapid contraction, the myocardium decelerates the rate of contraction
and eventually it ceases to contract and start relaxing. When the rate of contraction
of the ventricle becomes less than the volume flow rate in the root of the aorta, the
pressure difference between the LV and the aorta is practically zero. This moment co-
incides with the peak aortic flow rate (Formaggia, Quarteroni, and Veneziani, 2009).
Once the peak is reached, the aortic valve starts closing down. As the LV relaxation
continues, the pressure difference between the LV and the aorta reverses, becoming
positive. This causes the aortic flow to decelerate and, eventually, to reverse, flowing
back to the aortic root. Hence, the aortic valve closes, stopping the reversal of flow.
The pressure of the LV is still much greater than that of the LA, therefore the mitral
valve remains closed, so the closure of the aortic valve marks the start of the isovol-
umetric relaxation (IsR) phase, during which the myocardium keeps relaxing and the
LV pressure falls.

When the LA pressure becomes grater than the LV pressure, the mitral valve
opens and the ventricular filling (VF) phase starts, with the aortic valve that is still
closed. VF is characterised by two sub–phases. At first, the passive filling, marked
by the so–called E–wave in mitral flow, is driven by the pressure in the atrium plus a
suction effect of the LV due to its over–contraction past the equilibrium configuration
(Formaggia, Quarteroni, and Veneziani, 2009). Then, the active filling, marked by the
A–wave in mitral flow, is generated by the contraction of the left atrium. In healthy
young adults at rest, about one third of the filling of the ventricle is contributed by
the A–wave. This fraction increases with exercise and with age.

The cardiac output is the average blood volume that is ejected by the LV per unit
of time. In a resting healthy adult, CO is about 5–6 l/min. The stroke volume is ob-
tained as the difference between the left ventricular volume at the end of the filling
phase (end diastolic volume, EDV) and at the end of the contraction phase (end sys-
tolic volume, ESV). SV is is typically 70–80 ml. Cardiac dynamics affects SV and CO.
Force and rate of ventricular contraction depends on the so–called preload and after-
load. The force of contraction of the myocardium depends on the degree to which
it is stretched and therefore the degree of filling of the ventricle prior to contraction
(preload). The rate of contraction of the myocardium depends on the load that is
experienced, namely the forces that resist ejection (afterload), such as aortic pressure
(Formaggia, Quarteroni, and Veneziani, 2009). The venous return is an important
driver of the cardiac function. The ability of the heart to change its force of contrac-
tion and therefore stroke volume in response to changes in venous return is called
the Frank-Starling mechanism. Finally, the heart rate is determined by a group of cells

1By convention, the positive direction along the circulatory system is considered in the direction of
mean blood flow, i.e., away from the heart in the arteries and towards the heart in the veins.
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TABLE 2.1: Hypertensive conditions classified by diastolic (DBP) and
systolic (SBP) blood pressure values (Williams et al., 2018).

Level
DBP

[mmHg]
SBP

[mmHg]

Optimal (healthy) DBP < 80 SBP < 120

Normal 80 < DBP < 84 120 < SBP < 129

High normal 85 < DBP < 89 130 < SBP < 139

Grade 1 of hypertension 90 < DBP < 99 140 < SBP < 159

Grade 2 of hypertension 100 < DBP < 109 160 < SBP < 179

Grade 3 of hypertension DBP ≥ 110 SBP ≥ 180

Isolate systolic hypertension DBP < 90 SBP ≥ 140

called pacemakers cells, which trigger the contraction of the myocardium. The av-
erage HR in the heathy adult subject is 60–75 beats per minute (bpm) (Formaggia,
Quarteroni, and Veneziani, 2009; Battista, 2015; Charlton et al., 2019).

2.4 Hypertension

This Section provides the background for hypertension, to better understand the
aim and objective of Section 5.3, in which hypertension is addressed through a study
application of the cardiovascular numerical model.

Arterial pressure is an important diagnostic parameter for cardiovascular risks.
Hypertension, a disease identified with high blood pressure, is still one of the lead-
ing causes of morbidity and mortality worldwide (MacMahon et al., 2008; Lim et al.,
2012). The number of people with raised blood pressure in the world is increased
by 90% during the four decades between 1975 and 2015, with the majority of the
increase occurring in low–income and middle–income countries, largely driven by
the growth and ageing of the population (Zhou et al., 2017). Hypertension is con-
ventionally classified in ascending order of severity depending on the increase in
systolic and/or diastolic pressure values expressed in mmHg (Williams et al., 2018;
Bertaglia, 2019), as shown in Table 2.1. A specific hypertensive condition is the isolate
systolic hypertension, which is characterised by an increase in pulse pressure (Franklin
et al., 1997; Salvi, 2012). According to Hoskins, Lawford, and Doyle (2017), this type
of hypertension can be present in young subjects (<30 years) due to increase stroke
volume, and it is the most common form of hypertension in the adult population (>
50 years) due to increases arterial stiffness.

The aetiology of hypertension remains debated. Accepted causes include age-
ing, genetics, improper diet, and malfunction of major organs or nervous systems.
Nichols et al. (2011) pointed to increase of peripheral resistance and decrease in ar-
terial distensibility as the main causes of hypertension. Both of these causes are
responsible for an increased contribution to BP pulse waves of the reflected waves
from the peripheral sites of the vascular network. Reflections, however, are created
at every site of the arterial network where a change in characteristic impedance oc-
curs, namely with bifurcations, tapering, and changes in mechanical and geometrical
properties of the arterial walls (Gaddum et al., 2017; Mynard et al., 2020). Therefore,
quantifying and isolating individual reflections is a cumbersome task.
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When it is possible to identify a specific, underlying cause for hypertension,
such as an obstruction of renal blood flow, hyper–secretion of aldosterone or of
epinephrine and norepinephrine, hypertension is referred to as secondary hyperten-
sion. Contrarily, when the cause cannot be identified in pre–existent diseases or dys-
functions, and hypertension is suspected to stem from vessel stiffening, it is referred
to as essential/primary hypertension (Battista, 2015; Bertaglia, 2019). In blood vessels,
hypertension causes thickening of the tunica media, with a consequent increase in
stiffness, accelerates development of atherosclerosis and coronary artery disease and
increases systemic vascular resistance. In the heart, hypertension increases the after-
load, which forces the ventricle to work harder to eject blood (Tortora and Defrick-
son, 2013). Between 90 and 95% of the hypertensive patients are affected by primary
hypertension. The remaining 5-10% of cases are secondary hypertension (Tortora
and Defrickson, 2013).

Common clinical practice to treat hypertension is through the use of diuretics,
agents that decrease blood pressure by decreasing blood volume as a consequence
of the increased elimination of water and salt in the urine. Angiotensin convert-
ing enzyme inhibitors block the formation of angiotensin II and thereby promote
vasodilation and decrease the secretion of aldosterone. Beta blockers reduce blood
pressure by inhibiting the secretion of renin and by decreasing heart rate and con-
tractility. Vasodilators relax the smooth muscle in arterial walls, causing vasodilation
and lowering blood pressure by lowering systemic vascular resistance (Tortora and
Defrickson, 2013). The alarming aspect, however, is that approximately one-third
of people receiving anti-hypertensive medication still have uncontrolled high blood
pressure, which reflects the limited understanding of the pathophysiology underly-
ing the onset of elevated blood pressure and how this could represent a significant
economic problem for public healthcare (Hart, 2016).

In this context, research has lately identified cardiac function and systolic ejec-
tion as substantial contributors to hypertension, and in particular for isolate systolic
hypertension and pulse pressure amplification towards peripheral sites of the arte-
rial network (Segers, Stergiopulos, and Westerhof, 2000; Fok et al., 2014c; Fok et al.,
2014b; Gaddum et al., 2017; Flores Gerónimo et al., 2021). Vennin et al. (2017) de-
fined hypertension as a symptom of various combinations of a number of static, i.e.,
arterial geometry and stiffness, and dynamic, i.e., ventricular contraction, patholo-
gies. However, thoroughly explaining the relationship between cardiac function and
hypertension is a challenging task because it is difficult to decouple the interaction
between the arterial impedance and ventricular stroke profile to characterise a pa-
tient’s pathology. For a concrete step forward to understand the haemodynamic
mechanism underlying the elevation of PP and its amplification in the vascular net-
work, and accelerating clinical diagnosis and therapy monitoring of hypertension,
complementary in vivo–in silico approaches should be used. Numerical models offer
the possibility to simulate different haemodynamic configurations in physical–based
human systemic circulation, isolating single cardiac and vascular contributions to
blood pressure. On the other hand, in vivo pressure and flow pulse waves can be
measured in a multitude of physiological configurations, such as in healthy patients
at baseline condition or after pharmacological administration aimed at altering car-
diac or vascular properties, and in hypertensive patients. These measurements are
essential to validate the numerical results and increasing the reliability of haemody-
namic computational models.
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Chapter 3

The haemodynamic mathematical
model

3.1 Background

This Chapter presents the mathematical background to the haemodynamic model
considered in this Thesis. Firstly, in Section 3.1.1, the background on viscoelastic ma-
terials is given and the most common viscoelastic models are presented. In particu-
lar, the Standard Linear Solid Model (SLSM), which is used in this Thesis to charac-
terise the rheological behaviour of vessels wall, is thoroughly described. Secondly, in
Section 3.1.2, the background on balance laws in the framework of fluid mechanics
is given. This section addresses the general formulation of conservation and bal-
ance laws, the definition of hyperbolic systems of equations, as well as the Riemann
problem (RP) and the typology of waves that characterise its solution, namely shock,
contact, and rarefactions waves. Moreover, the mass and momentum balance laws
are derived in their general formulation, and the pressure–area law is introduced.
This latter depends on the mechanical characteristics of vessels wall and it is usu-
ally referred to as tube law. Thirdly, in Section 3.2, the mathematical model of the
cardiovascular network is presented. This model relies on the so–called augmented
fluid–structure interaction (a-FSI) system, which was presented in the previous con-
tributions of Bertaglia et al. (Bertaglia, 2019; Bertaglia, Caleffi, and Valiani, 2020;
Bertaglia et al., 2020; Bertaglia et al., 2021). To account for the fluid–structure in-
teraction and therefore to consider the viscoelastic mechanical behaviour of vessels
wall when they undergo a pressure pulse, the tube law is included in the govern-
ing system of equations based on the SLSM. The “augmented" property is given by
the addition of three trivial equations that allow to treat mechanical and geometrical
discontinuities along blood vessels. Being the a-FSI system hyperbolic, its eigen-
structure is analysed. Finally, Section 3.3 presents the mathematical models used to
simulate inlet and outlet boundary conditions (BCs). These are modelled by using
lumped–parameter models, namely 0-D models that rely on the hydraulic–electric
analogy, as introduced in Chapter 2. The inlet BC represents the cardiac contraction
model, and the outlet BC simulates the micro-circulation. Both BC models consist of
a combination of the compartments of the 0-D models, i.e., resistance, capacitor, and
inductance, which can be in series or in parallel.

3.1.1 Mathematical models for viscoelastic materials

A viscoelastic material is characterised by a mechanical response to a stress that
is in-between that of an elastic solid and a viscous liquid, therefore exhibiting both
elastic and viscous characteristics when it deforms (Gurting and Sternberg, 1961;
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FIGURE 3.1: Schematic representation of the three behavioural fea-
tures of a viscoelastic material. (A) Creep: when the material is main-
tained under constant stress, it shows a continuous variation of the
deformation over time, composed by an elastic instantaneous strain
and a retarded damping effect. (B) Stress relaxation: when the ma-
terial undergoes a constant deformation, it presents an exponential
relaxation of the stress over time after an instantaneous peak. (C)
Hysteresis loop determined by loading and unloading phase of the

material.

Christensen, 1982; Lakes, 2009; Bertaglia, 2019). In viscoelastic materials, the en-
ergy put into the system during the loading phase is not totally recovered during
relaxation. Thus, in these materials, the strain depends on the history of the stress,
and vice–versa. There are three key features that characterise a viscoelastic material:
creep, stress relaxation, and hysteresis (Figure 3.1).
Creep represents the continuous deformation of the material over time when it is
kept under constant stress. In particular, a viscoelastic material, when loaded, un-
dergoes an instantaneous deformation (strain), which then increases over time at a
ever decreasing strain rate. When the material is unloaded, only part of the defor-
mation accumulated during the loading phase is restored, with an instantaneous re-
covery of the elastic strain and a delayed recovery of the anelastic deformation over
time. Eventually, a permanent strain may remain in the material. In one dimension,
the history of the stress σ depends on the time t through the unit Heaviside step
function H(t), defined as 0 for t < 0, 1 for t > 0, and 1/2 for t = 0, with magnitude
(Lakes, 2009):

σ(t) = σ0H(t). (3.1.1)

The strain, ϵ(t) also depending on time, defines the so–called creep compliance
(Lakes, 2009):

J(t) = ϵ(t)σ0. (3.1.2)

In linear viscoelastic materials, the creep compliance does not depend on the stress
level but only on time.
The relaxation time describes the continuous decrease of the stress over time, when it
is kept under constant strain, after an instantaneous peak. Assuming that the strain
history is a step function with magnitude ϵ0 beginning at t = 0,

ϵ(t) = ϵ0H(t), (3.1.3)

the stress σ(t) will decrease with an exponential decay. This decreasing trend is
typical of viscoelastic materials due to their relaxation time feature. Also the di-
astolic decay (relaxation phase) over time of blood pressure in a blood vessel after
the systolic (loading) phase is characterised by an exponential trend. Indeed, the
exponential relaxation decay of blood pressure is a measure of arterial compliance



3.1. Background 27

A B C

ηE

E

η

E2

η

E1

FIGURE 3.2: Schemes of the viscoelastic models: (A) Maxwell model,
(B) Kelvin-Voigt model, and (C) Standard Linear Solid model consti-
tuted by a first spring in series with a Kelvin-Voigt model. E identify
the Young modulus of the spring, and η identifies the viscosity coef-

ficient of the dashpot.

(Mariscal-Harana et al., 2021). The ratio

E(t) =
σ(t)
ϵ0

, (3.1.4)

is called relaxation modulus, or apparent Young modulus, and in linear materials it
is independent on the stress level (Lakes, 2009).
Finally, the hysteresis loop describes the dissipation of energy when the material
undergoes loading and unloading cycling (Battista, 2015). The energy dissipation
associated with hysteresis, as it is when the vessel undergoes dilation and contrac-
tion during a cardiac cycle, makes the numerical modelling and simulation of vessels
networks a non–trivial matter.

The Standard Linear Solid Model

Although a few of the existent materials behave in a linear way, the theory of lin-
ear viscoelasticity provides feasible engineering approximation that is applicable to
many field, as in the case of haemodynamic modelling (Bertaglia, 2019). Indeed, it is
well known that blood vessels (and living tissues in general) exhibit viscoelasic prop-
erties (Fung, 1997; Nichols et al., 2011; Salvi, 2012). In literature, viscoelasticity is ac-
counted for using more or less complex models, which can be linear or not (Holen-
stein, Niederer, and Anliker, 1980; Bessems et al., 2008; Valdez-Jasso et al., 2009;
Wang, Golob, and Chesler, 2016; Ghigo et al., 2017a; Mitsotakis et al., 2019). Con-
sidering a viscoelastic model represented by a set of springs and dashpots, where
the former represent the elastic elements and the latter correspond to the viscoelas-
tic elements, provides a constitutive relation of linear viscoelasticity (Battista, 2015).
Each spring is defined by a Young modulus E, and each dashpot is characterised by
a viscosity coefficient η, which takes into account the time dependent relaxation of
the material of the wall and its damping effect.

Various configurations of the combination of springs and dashpots can be used
to represent a viscoelastic material, as shown in Figure 3.2. The Maxwell (MX) and
Kelvin-Voigt (KV) models, schematised in Figure 3.2 A and B respectively, are 2–
parameter viscoelastic models. The MX model consists of a spring and a dashpot in
series. When undergoing a sudden load maintained constant in time, the mechani-
cal behaviour of MX model is characterised by an instantaneous deformation, which
corresponds to the spring immediately stretching, followed by the additional strain
of the dashpot that slowly extends, defined by a linear increase (Hoskins, Lawford,
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and Doyle, 2017). Once the load is removed, the spring reacts again instantaneously,
relaxing, whereas the dashpot does not recover, leading the material to remain with
a “creep" strain (Bertaglia, 2019). The KV model consists of a spring and a dash-
pot in parallel and, when suddenly loaded with a constant stress over time, it does
not show an instantaneous deformation but rather a gradual increase of the defor-
mation over time (Hoskins, Lawford, and Doyle, 2017). This is because the spring
cannot instantaneously deform since the stress is initially completely absorbed by
the dashpot, which holds back the spring, and being transferred to the spring only
later in time (Bertaglia, 2019). The same occurs also when the unit is unloaded, and
eventually no permanent strain is left.

A specific 3–element viscoelastic model is the Standard Linear Solid Model (SLSM).
This model is able to represent the realistic behaviour of vessels wall when under-
going a stress, namely a pressure pulse, exhibiting all three primary features of vis-
coelasticity: creep, stress relaxation, and hysteresis (Battista, 2015). Regarding hys-
teresis, the SLSM model allows the representation of the pressure–area loops of the
vessel, showing the energy dissipated during the cardiac cycle after the expansion
(systolic) and relaxation (diastolic) phases (Nichols et al., 2011; Salvi, 2012; Bertaglia
et al., 2020; Piccioli et al., 2022a). The SLSM is composed of a linear elastic spring
added in parallel with a MX unit or in series with a KV unit. Both versions of the
SLSM reproduce exactly the same mechanical behaviour of the material (Gurting
and Sternberg, 1961; Lakes, 2009). In this Thesis, the configuration of the SLSM with
the KV unit, represented in Figure 3.2 C, is employed for the formulation of the
haemodynamic mathematical model to account for vessels wall viscoelasticity, and
it is now presented.
The system of equations describing the SLSM is:

ϵ = ϵ1 + ϵ2 = ϵ1 + ϵD, (3.1.5a)
σ = σ1 = σ2 + σD, (3.1.5b)

σ1 = E1ϵ1, (3.1.5c)
σ2 = E2ϵ2, (3.1.5d)

σD = η
dϵD

dt
, (3.1.5e)

where ϵ is the total strain, σ is the total stress, and the subscripts D, 1, and 2 identifies
the contributes given by the dashpot, and by the first and second springs, respec-
tively. By manipulating the equations in System (3.1.5), the following constitutive
law is obtained:

dσ

dt
= E0

dϵ

dt
− 1

τr
(σ − E∞ϵ) , (3.1.6)

where E0 is the instantaneous Young modulus, E∞ is the asymptotic Young modulus,
and τr is the relaxation time (Lakes, 2009; Bertaglia, 2019), which are defined as:

E0 = E1, E∞ =
E1E2

E1 + E2
, τr =

η

E1 + E2
. (3.1.7)

The SLSM is able to exhibit all three primary features of a viscoelastic material.
Eq. (3.1.7) clearly defines the mechanical response of the SLSM: when it is loaded, the
instantaneous response is attributed only to the first spring, since E0 = E1. Then, the
dashpot starts experimenting the stress as it gradually opens over time. If the load is
maintained constant in time, the two springs behave as they were in series, without
considering the presence of the dashpot: 1/E∞ = 1/E1 + 1/E2. At the asymptotic
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state, the creep is ascribed only to the spring in parallel with the dashpot. Finally,
when the system is unloaded, the first spring relaxes instantaneously, whereas the
second has a slower response, being held back by the dashpot (Bertaglia, 2019).
By applying the Laplace transform theory it is possible to derive the creep response
of the SLSM, defined by the following function (Lakes, 2009):

J(t) =
1
E0

e−
t

τc +
1

E∞

(
1 − e−

t
τc

)
, (3.1.8)

where τc = η/ E2 si the retardation/creep time. Noteworthy, it is also possible to
derive the relaxation function (Lakes, 2009), which describes the change in stiffness of
the material over time, i.e., the apparent Young modulus, starting from the instan-
taneous Young modulus, E0, and ending with the asymptotic Young modulus, E∞,
through the relaxation time τr:

E(t) = E0e−
t

τr + E∞

(
1 − e−

t
τr

)
. (3.1.9)

3.1.2 Hyperbolic balance laws in fluid mechanics

Most physical phenomena can be described by a system of partial differential
equations (PDEs) consisting of balance laws. In fluid mechanics, balance laws result
straightforwardly by applying the fundamental laws for the conservation of exten-
sive (integral) quantities such as, among others, mass and momentum, inside a closed
system, also called fluid volume, Vf . Vf is understood to move at the same velocity of
the fluid, therefore no relative velocities occur (Navas-Montilla, 2018). However, the
direct application of conservation laws to the fluid volume can be very cumbersome
or even impossible in many engineering applications. To overcome this limitation,
the integration of the physical laws is performed inside a control volume, Vc, that fits
the geometry of the problem, substituting the fluid volume. Consequently, the flux
across the boundaries of Vc, hereafter referred as control surfaces, ∂Vc, must be con-
sidered in order to ensure conservation (Navas-Montilla, 2018). The Reynolds Trans-
port Theorem (RTT) (Toro, 2009; Quarteroni and Formaggia, 2004a) is employed to
relate variations in the fluid volume to variations in the control volume, allowing to
express the variation of an extensive quantity inside the fluid volume as the variation
of such quantity in the control volume plus the flux of its associated intensive prop-
erty (e.g., density) across the control surfaces (White, 1998; Navas-Montilla, 2018).
Given M a vector of any extensive property of the fluid and U = dM/dV the inten-
sive value of M per unite volume, RTT is expressed as

d
dt

MVf (t) =
d
dt

∫
Vc

UdV +
∫

∂Vc

U (v − vs) · n̂dσ, (3.1.10)

where the term (v − vs) expresses the relative velocity between the fluid and control
surface, which coincides with the arterial wall, allowing the presence of a permeable
lumen (Formaggia, Quarteroni, and Veneziani, 2009), and n̂ is the outer normal of
∂Vc. In Eq. (3.1.10), the term on the left–hand side stands for the total variation
of the quantity M inside the fluid volume Vf , which can be either null when the
quantity is conserved, and so the equation is referred to as conservation law, or equal
to a source. When existing, the source is considered acting on the control volume
(Navas-Montilla, 2018), and the equation is properly said a balance law.

The differential formulation for a system of balance laws is straightforwardly
obtained by assuming an infinitesimal integration volume in the RTT and reads in
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its three–dimensional (3-D) divergence form (Navas-Montilla, 2018) as

∂U
∂t

+∇ · F(U) = S, (3.1.11)

where U = U(x, t) is the vector of conserved quantities, F(U) is the vector of fluxes,
and S is the vector of source terms, which is typically in the form S = S(U, x).

Assuming a null vector of source terms and the problem one–dimensional (1-
D), the system of conservation laws in PDE form can be also written in the linear
homogeneous form (Toro, 2009; Navas-Montilla, 2018) as

U t + F(U)x = 0, (3.1.12)

where the subscripts t and x denote the partial derivatives in time and space, ∂/∂t
and ∂/∂x, respectively, and

U =


u1
u2
...

um

 , F(U) =


f1
f2
...

fm

 . (3.1.13)

Each component of the vector of fluxes, fi, is a function of the uj components of
U(x, t). Applying the chain rule to the second term in Eq. (3.1.12),

∂F(U)

∂x
=

∂F
∂U

∂U
∂x

, (3.1.14)

the system of conservation laws can be written in the homogeneous quasi–linear
form (Toro, 2009), namely

U t + A(U)Ux = 0, (3.1.15)

where A(U) = ∂F/∂U is the Jacobian of the flux function F(U) in Eq. (3.1.12). The
entries of the matrix A(U) are partial derivatives of the components fi of the vector
F with respect to the components uj of the vector of conserved variables U, that is
aij = ∂ fi/∂uj, namely

A(U) =


∂ f1/∂u1 · · · ∂ f1/∂um
∂ f2/∂u1 · · · ∂ f2/∂um

...
. . .

...
∂ fm/∂u1 · · · ∂ fm/∂um

 . (3.1.16)

If the Jacobian matrix in (3.1.16) does not depend either on U or x, it would be con-
stant and System (3.1.15) would be said to be linear.

System (3.1.15) is said to be hyperbolic at a point (x, t) if the Jacobian A(U) has
m real eigenvalues λ1, λ2, . . . , λm and a corresponding set of m linearly independent
right eigenvectors R1, R2, . . . , Rm. The system is said to be strictly hyperbolic if the
eigenvalues λi are all distinct (Toro, 2009).

When Eq. (3.1.12) entails the presence of source terms S(U) at the right–hand
side of the equation, and it cannot be written in the conservative form, the system of
PDE balance laws reads in the general non–conservative non–homogeneous form as

U t + F(U)x + B(U)Ux = S(U), (3.1.17)
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where S(U) = (s(u1), s(u2), . . . , s(um))⊺ is a vector of algebraic expressions that are
functions of the conservative variables, and B(U) is the matrix of the fluxes related
to the non non–conservative part of the system.

Under the hypothesis of linearity of the PDEs system, it is now recalled the def-
inition of characteristic curves, or simply characteristics, which are defined as curves
x = x(t) in the t–x plane along which the PDE becomes an ordinary differential
equation (ODE) (Wylie and Streeter, 1978; Toro, 2009). Considering x = x(t) and
u = u(x(t), t), the rate of change of u along x = x(t) is

du
dt

=
∂u
∂t

+
dx
dt

∂u
∂x

=
∂u
∂t

+ a
∂u
∂x

, (3.1.18)

where a is called the characteristic speed and, according to Eq. (3.1.18), a = dx/dt
is the slope of the curve x = x(t) in the t–x plane and is assumed to be constant.
Eq. (3.1.18) defines that u is constant along the characteristic curve x = x(t) with
characteristic speed a. To define a particular member of the family of characteristic
curves satisfying the ODE a = dx/dt, an initial condition (IC) at time t = 0 is needed.
The system of equations constituted by a PDE and an IC is said initial value problem
(IVP). Given x(0) = x0 as IC, then the single characteristic curve passing though the
point (x0, 0) is

x(t) = x0 + at. (3.1.19)

Finally, recalling that u is constant along the characteristic curve, if the initial value
of u is known (u(x, 0) = u0(x) at time t = 0), then along the characteristic expressed
in Eq. (3.1.19), the solution is

u(x, t) = u0(x0) = u0(x − at). (3.1.20)

Therefore, given an initial profile u0(x), the PDE will simply translate this profile
with velocity a to the right if a > 0 and to the left if a < 0, and the shape of the initial
profile remains unchanged. This concept is at the base of wave propagation phe-
nomena, where a wave is understood as some recognisable feature of disturbance
that travels at a finite speed (Toro, 2009).

To analyse the PDE hyperbolic system in Eq. (3.1.15) and its related IC, it is useful
to transform the dependent variables U(x, t) into a new set of dependent variables
W(x, t), called characteristic variables (Toro, 2009). These are defined in virtue of the
hyperbolicity of the PDE system as W = R−1U, where R−1 is the inverse matrix
of R = [R1, R2, . . . , Rm]. With mathematical manipulation, System (3.1.15) can be
rewritten in the characteristic form, namely in terms of the characteristic variables as

W t + ΛW x = 0, (3.1.21)

where Λ is a diagonal matrix with diagonal entries that are the eigenvalues λi of
A(U). The i–th PDE of System (3.1.21) is

∂wi

∂t
+

dx
dt

∂wi

∂x
=

∂wi

∂t
+ λi

∂wi

∂x
= 0, i = 1, . . . , m, (3.1.22)

involving single unknowns wi(x, t). Note that the characteristic speed is λi and
there are m characteristic curves satisfying m ODEs of the type dx/dt = λi, for
i = 1, . . . , m.
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FIGURE 3.3: Illustration of the initial condition (right) and solution
(left) for a Riemann problem considering one PDE. At the initial time,
the RP consists in two constant states separated by a discontinuity at
x = 0. The solution is represented in the x–t plane, with the disconti-

nuity propagating with positive characteristic speed a.

The Riemann problem

The Riemann problem (RP) is a IVP where the IC presents a discontinuity. When
considering a homogeneous linear PDE, the RP reads as

PDE : ut + aux = 0, (3.1.23a)

IC : u(x, 0) = u0(x) =

{
uL if x < 0,
uR if x > 0,

(3.1.23b)

where uL and uR are two constant values. The trivial case would result when uL =
uR. The IC has the discontinuity in x = 0, and this propagates in the x–t plane at a
speed a, therefore covering a distance d = at in time t. This particular characteristic
curve separates those characteristic curves to the left, characterised by the solution
uL, from those curves to the right, characterised by the solution uR. Therefore, the
solution of the RP (3.1.23) is obtained straightforwardly:

u(x, t) = u0(x − at) =

{
uL if x − at < 0,
uR if x − at > 0.

(3.1.24)

The presented RP and related solutions are shown in Figure 3.3. The only character-
istic curve across which the solution of the RP (3.1.24) changes is the one that passes
through x = 0 and travels at constant celerity.

The RP (3.1.23) can be extended to a hyperbolic system of PDEs and their corre-
spondent ICs in the following generalised IVP (Toro, 2009):

PDE : U t + AUx = 0, −∞ < x < ∞, t > 0, (3.1.25a)

IC : U(x, 0) = U(0)(x) =

{
UL if x < 0,
UR if x > 0,

(3.1.25b)

Assuming to have a RP for a general 2 × 2 linear system, the waves in the x–t plane
with origin in (0,0) will be two, travelling with speeds equal to λ1 and λ2, being
λ1 < λ2 (Figure 3.4). The solution to the left of the slowest characteristic speed
dx/dt = λ1 is simply the data state UL, whereas that to the right of the fastest
characteristic speed dx/dt = λ2 is simply the data state UR. The wedge between
the λ1 and λ2 waves is the so–called star region and the solution is there denoted as
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FIGURE 3.5: Elementary wave solutions of the Riemann problem: (A)
shock wave of speed Si, (B) contact wave of speed Si, and (C) rarefac-

tion wave.

where UL and UR identifies the states immediately to the left and right of the discon-
tinuity. Secondly, we define the generalised Riemann Invariants (RIs) as the relations
that hold true, for certain waves, across the wave structure, and lead to the following
(m − 1) ODEs

dw1

r(i)1

=
dw2

r(i)2

= · · · = dwm

r(i)m

. (3.1.30)

They relate ratios of changes dws of a quantity ws to the respective component ri
s of

the right eigenvector Ri corresponding to a λi–wave family (Toro, 2009).
Having introduced that, shock, contact discontinuity, and rarefaction waves can

be finally defined. Shock waves are jump discontinuities connecting the left and
right constant states, and they are related to genuinely non–linear fields. Shock
waves satisfy the Rankine-Hugoniot condition and the entropy condition, i.e., λi(UL) >
Si > λi(UR). Contact waves are jump discontinuities connecting the left and right
constant states, but they are related to linearly degenerate fields; they satisfy the
Rankine-Hugoniot condition and the generalised RIs remain constant across the
wave. Also, contact waves satisfy the parallel characteristic condition, i.e., λi(UL) =
λi(UR) = Si. Finally, rarefaction waves are smooth transitions connecting the left
and right constant states and they are related to genuinely non–linear fields. Across
rarefactions, it holds true the constancy of the generalised RIs. They are charac-
terised by the divergence of the characteristics, i.e., λi(UL) < λi(UR). The three
wave types are represented in Figure 3.5.

Finally, the 2×2 RP can be generalised in a N×N RP, maintaining the same gen-
eral formulation of IVP (3.1.25). In this case, the solution U(x, t) consists of N + 1
constant states separated by N waves. Each characteristic field λi corresponds to a
wave type. In linear hyperbolic systems with constant coefficients each wave is a
discontinuity of speed Si = λi and defines a linearly degenerate field. In non–linear
hyperbolic systems, the waves may be discontinuities as shock and contact waves,
or smooth transition waves like rarefactions. Define the wave type is a crucial con-
dition for the determination of the associated RP.

One–dimensional balance laws

One of the base assumptions in blood flow modelling is to consider blood in large
arteries as a constant–density incompressible Newtonian fluid (Formaggia, Quar-
teroni, and Veneziani, 2009). There are three main ways to derive a 1-D model of an
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incompressible fluid flowing in a compliance pipe. The first is to perform an asymp-
totic analysis starting from the incompressible Navier-Stokes equations by assuming
that the radius of the vessel, R, is small compared to its length, l, i.e., R/l ≪ 1. The
second is to assume cylindrical symmetry and integrate the Navier-Stokes equa-
tions on a generic section. Otherwise, the governing equations of blood flow can
be derived from conservation principles (Toro, 2009; Formaggia, Quarteroni, and
Veneziani, 2009).

It is considered a simple compliant tube as a model of an artery with cross–
section S, assuming that the axis of the vessel is rectilinear and coincides with the
x–axis. The starting point for the derivation of the 1-D governing equations is the
RTT, Eq. (3.1.10), for an arbitrary control volume Vc with boundaries ∂Vc and outer
normal n̂ of the compliant tube considered. Hence, Vc is composed of the arterial
wall ∂Vc and the two end sections S1 and S2, which are assumed to be normal to
the axis (Formaggia, Quarteroni, and Veneziani, 2009). To obtain the 1-D form of the
conservation laws the area–averaged values of the variables U must be considered,
i.e.,

U =
1
A

∫
S

Udσ, (3.1.31)

where A = A(x, t) =
∫

S dσ is the area of the cross–section S. So, it is possible to
write a volume integral as∫

Vc

UdV =
∫ x2

x1

[∫
S

Udσ

]
dx =

∫ x2

x1

AUdx, (3.1.32)

where x1 and x2 (x2 > x1) are the x–coordinates of the cross–sections S1 and S2, re-
spectively.

The law of conservation of mass in the flexible tube is obtained considering the
extensive property, M in Eq. (3.1.10), to be the total mass inside the control volume,
Vc. The correspondent intensive quantity is the blood density, ρ, which is assumed to
be constant and so the fluid incompressible. It is assumed that no mass is generated
or annihilated within Vc, that the surface ∂Vc is fixed, meaning that the mass flows
across the surfaces S1 and S2, and the impermeability of the lumen, which implies
vs = 0. Therefore, it holds that

DM
Dt

= 0, (3.1.33)

implying
d
dt

∫
Vc

ρdVc +
∫

∂Vc

ρv · n̂dσ = 0. (3.1.34)

The first term in the left–hand side of Eq. (3.1.34) is the time rate of change of the
mass enclosed by the volume Vc, which is fixed and independent of time t. The
second term can be rewritten by applying the Gauss’ theorem. Hence, Eq. (3.1.34)
reads

d
dt

∫
Vc

ρdVc +
∫

Vc

∇ · (ρv)dσ = 0. (3.1.35)

The area–averaged quantity is considered to obtain a 1-D formulation of the law, so
the reformulations expressed by equations (3.1.31) and (3.1.32) are applied. Remind-
ing that ρ is constant, the area–average density coincides with ρ, and eventually it
can be simplified from all terms. Moreover, as x1 and x2 are arbitrary it follows that
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the integral must vanish. Hence, the conservation of mass reads as

∂A
∂t

+
∂(Avx)

∂x
= 0, (3.1.36)

where vx is the area–averaged, x–component of the vector of velocity v.

The law of balance of momentum is obtained considering M = ρv in Eq. (3.1.10),
and derives from the direct application of Newton’s law on the volume Vc. The total
force acting on the volume is divided into surface forces, f S, and volume forces, f V .
The former derives from the stress vector and depends on the pressure, p, and a vis-
cous component (Toro, 2009; Formaggia, Quarteroni, and Veneziani, 2009), whereas
f V accounts for inertial or gravitational forces. The hypotheses of constant density
and impermeable lumen are still valid. In light of Newton’s law, the following equa-
tion holds:

DM
Dt

= f S + f V . (3.1.37)

Rewriting Eq. (3.1.37) using Eq. (3.1.10) results

d
dt

∫
Vc

(ρv)dVc +
∫

∂Vc

v(ρv) · n̂dσ = f S + f V . (3.1.38)

Eq. (3.1.38) states that the time rate of momentum within the fixed control volume
is due to the net momentum inflow over the momentum outflow plus surface and
volume source terms. Analogously to the derivation of the conservation of mass, the
Gauss’ theorem is invoked; considering the 1-D formulation and the arbitrariness of
spacial coordinates, the balance of momentum law is obtained,

∂(Avx)

∂t
+

∂(Avx
2)

∂x
+

A
ρ

∂p
∂x

= −A
ρ

dx + ρAg, (3.1.39)

where dx is a term depending on the viscosity of the fluid in its x–component and
is a linear function of the area–averaged velocity vx (Formaggia, Quarteroni, and
Veneziani, 2009). Hence, the term Adx/ρ derives from surface forces, whereas the
term ρAg stands for volume forces.

The unknowns in the system of mass and momentum balance laws are the area
of the vessel, A, the area–averaged velocity, vx, and the pressure of the vessel, p. The
problem is undetermined as the number of unknowns exceeds that of the equations.
A common way to close the system is to explicit a relationship between the pressure
and the area of the vessel.

Some hypothesis are made to express the pressure–area law of the tube. Firstly,
it is assumed the static equilibrium in the radial direction of the cylindrical tube.
Moreover, the ratio h0/R, where h0 is the reference vessel wall thickness, is so small
to neglect bending terms, and the wall displaces in the normal direction, so that
the longitudinal and circumferential displacements are negligible compared to the
radial ones (this hypothesis is widely accepted in the biomedical literature) (For-
maggia, Quarteroni, and Veneziani, 2009). The vessel is subjected to a time varying
transmural pressure across the surface, ∆p = p − pext, with pext being the external
pressure that is assumed constant. Homogeneous Dirichlet boundary conditions
are assumed (i.e., a clamped vessel). Finally, the reference configuration is the pre–
stressed. The general, widely–adopted formulation of the pressure–area law in the
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easiest form is
p = pext + ψel(A; A0, h0, E), (3.1.40)

where ψel is the elastic contribution to transmural pressure that depends on the ves-
sel cross–section, A = A(x), the reference (equilbrium) area of the lumen, A0 =
A0(x), the vessel wall thickness, h0, and the mechanical properties of the vessel wall,
i.e., the Young modulus E = E(x). The subscript 0 denotes the reference (equilib-
rium) state, (p, q) = (pext, 0), with q the blood flow rate (Formaggia, Quarteroni, and
Veneziani, 2009; Alastruey, Parker, and Sherwin, 2012). The main properties of ψel
are

∂ψel

∂A
> 0, ψel(A0; A0, h0, E) = 0, (3.1.41)

for all allowable values of A, A0, h0, and E (Formaggia, Quarteroni, and Veneziani,
2009). Eq. (3.1.40) assumes that the wall is instantaneously in equilibrium with the
pressure forces acting on it, and represents the pressure–area law for vessels in case
of an elastic vessel wall. More complex pressure–area laws can be obtained when
the viscoelasticity of the vessel wall is considered, resulting in the enrichment of
Eq. (3.1.40) with additional terms related to the viscoelastic model chosen. In this
Thesis a specific viscoelastic tube law, based on the SLSM presented in Section 3.1.1,
is introduced in the governing system of equations in PDE form. The constitutive
law has the added value of simulating the proper mechanical response of the vessel
wall when undergoing a pressure pulse, which is characterised by all primary fea-
tures of viscoelastic materials (creep, stress relaxation, and hysteresis, introduced in
Section 3.1.1), and is thoroughly presented in the following of this Chapter.

3.2 The 1-D augmented fluid-strcuture-interaction (a-FSI) sys-
tem

The well established system of governing equations defining blood flow circula-
tion in compliant vessels is composed of the standard equations of balance of mass
and momentum of the fluid mechanics, presented in Section 3.1.2. These were ob-
tained in the 1-D formulation, assuming the fluid to be incompressible and an im-
permeable vessel wall. Moreover, the hypothesis of large wavelengths with respect
to the radius of the vessels is made (Wang, Fullana, and Lagrée, 2015). To obtain the
set of balance laws employed in this Thesis, gravity forces in the momentum balance
law are neglected, i.e., ρAg = 0 in Eq. (3.1.39). This hypothesis means simulating
blood flow in a subject in the supine position. To make the set of governing equation
a determined problem, a constitutive relationship relating the cross–sectional area
to the internal pressure is needed, which is the so–called tube law. The tube law in
general form is given in Eq. (3.1.40), and it can be expressed both in elastic and vis-
coelastic formulations. The elastic formulation consists in a first reasonable approx-
imation of the mechanical behaviour of vessels (Müller and Toro, 2014a; Müller and
Toro, 2014b; Mynard and Nithiarasu, 2008; Sherwin et al., 2003a; Toro and Siviglia,
2013; Willemet and Alastruey, 2014), whereas the viscoelastic one allows for a more
accurate characterization of the FSI occurring between blood flow and vessel walls,
considering damping effects (Alastruey, Parker, and Sherwin, 2012; Alastruey et al.,
2012; Bertaglia, Caleffi, and Valiani, 2020; Bertaglia et al., 2020; Bertaglia et al., 2021;
Mynard and Smolich, 2015; Raghu et al., 2011). In the proposed model, viscoelas-
ticity is taken into account recurring to the SLSM, previously introduced in Section
3.1.1. SLSM is the simplest viscoelastic model able to exhibit all the three primary
features of a viscoelastic material: creep, stress relaxation and hysteresis. Finally,
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to ensure a formally correct numerical treatment of possible longitudinal discon-
tinuities of vessels properties, either geometrical or mechanical – i.e., equilibrium
cross–sectional area A0(x), instantaneous Young modulus E0(x) (or even the asymp-
totic one, E∞), and external pressure pext(x) – three additional closure equations are
added to the system, imposing these quantities to be constant in time (Bertaglia, Cal-
effi, and Valiani, 2020; Castro et al., 2008; Müller and Toro, 2013; Toro and Siviglia,
2013). Thus, the a-FSI system is obtained:

∂t A + ∂x(Au) = 0, (3.2.1a)

∂t(Au) + ∂x(Au2) +
A
ρ

∂x p =
f
ρ

, (3.2.1b)

∂t p + d ∂x(Au) = S, (3.2.1c)
∂t A0 = 0, (3.2.1d)
∂tE0 = 0, (3.2.1e)

∂t pext = 0. (3.2.1f)

Here A(x, t) is the cross–sectional area of the vessel, u(x, t) is the cross–sectional av-
eraged blood velocity (previously labelled as vx in Section 3.1.2, p(x, t) is the internal
blood pressure, ρ is the blood density. The term f represents the contribution of sur-
face forces related to the viscosity, which were labelled as Adx in Eq. (3.1.39). S is the
source term related to the viscoelastic modelling of the vessels wall. Variables x and
t are space and time, respectively, and subscripts indicate the correspondent partial
derivative.

It is possible to write the non–linear non–conservative System (3.2.1) in the gen-
eral compact form:

∂tQ + ∂x f (Q) + B(Q)∂xQ = S(Q), (3.2.2)

and, furthermore, in the following quasi–linear form:

∂tQ + A(Q)∂xQ = S(Q), (3.2.3)

with A(Q) = ∂ f /∂Q + B(Q). Here, Q is the vector of the state variables, f (Q)
represents the vector of the analytical fluxes related to the conservative part of the
system, while B(Q) identifies the non–conservative matrix of the problem, and S(Q)
is the vector of the source terms. In matrix formulation, these components are

Q =



A
Au
p

A0
E0
pext

 , A(Q) =



0 1 0 0 0 0
−u2 2u A

ρ 0 0 0
0 d 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


, S(Q) =



0
f
ρ

S
0
0
0


,

with

∂ f
∂Q

=



0 1 0 0 0 0
−u2 2u 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 , B(Q) =



0 1 0 0 0 0
0 0 A

ρ 0 0 0
0 d 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


,
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being f (Q) =
(

Au, Au2, 0, 0, 0, 0
)⊺.

The friction model and the tube law are thoroughly explained in the following
of this Section, besides other worth–highlighting features of the a-FSI model. Fur-
ther details on the eigenvalues and eigenvectors characterising the system are also
presented.

3.2.1 Friction loss model

In Eq. (3.2.1b) f represents the friction loss term, and, as introduced in Section
3.1.2, it depends on the velocity profile. This is assumed self–similar and axisym-
metric, even in sections with large curvatures (e.g., in the aortic arch), and its typ-
ical formulation used for blood flow satisfying the no–slip condition is (Alastruey,
Parker, and Sherwin, 2012):

v(x, r, t) = u
ς + 2

ς

[
1 −

( r
R

)ς]
, (3.2.4)

where r is the radial coordinate, R is the vessel radius, R =
√

A/
√

π, and ς =
(2 − αc)/(αc − 1) is the polynomial order depending on αc, the Coriolis coefficient,
which accounts for the non–linearity of the sectional integration of the velocity. For
blood flow in arteries, it has been demonstrated that the velocity profile is on av-
erage close to flat in central arteries and not parabolic (Quarteroni and Formaggia,
2004b), thus αc= 1.1 (ς = 9) provides the best compromise to fit experimental data
(Xiao, Alastruey, and Figueroa, 2014). Contrarily, a parabolic velocity profile is more
suitable for non–central arteries. For the velocity profile as in Eq. (3.2.4), the fric-
tion loss term is defined as follows (Bertaglia et al., 2020; Quarteroni, Veneziani, and
Vergara, 2016; Xiao, Alastruey, and Figueroa, 2014):

f = −2(ς + 2)µπu, (3.2.5)

where µ is dynamic blood viscosity.

3.2.2 Tube law

The left–hand side of Eq. (3.2.1c) has the same formulation with both the elastic
and viscoelastic characterizations of the wall (Bertaglia et al., 2021; Bertaglia, Caleffi,
and Valiani, 2020; Bertaglia et al., 2020). This contribution is derived from the sim-
plest case of a pressure–area relationship describing a perfectly elastic behaviour of
the vessel wall. Introduced in its general form in Section 3.1.2, the elastic constitu-
tive tube law reads (Formaggia, Lamponi, and Quarteroni, 2003; Matthys et al., 2007;
Müller and Toro, 2013; Bertaglia, 2019)

p = pext + ψel = pext + K (αm − αn) . (3.2.6)

The elastic contribution of the transmural pressure, ψel , depends on the dimension-
less cross–sectional area, α = A(x)/A0(x), the stiffness coefficient of the material,
K(x), and two specific parameters related to the behaviour of the vessel wall (i.e.,
artery or vein), m and n. The stiffness coefficient, K(x), and the parameters m and n
characterising the mechanical properties of an arterial wall are

K =
E0

W
, m = 1/2, n = 0, (3.2.7)
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whereas, in the case of a venous wall (Shapiro, 1977), they are

K =
E0

12W3 , m = 10, n = −3/2, (3.2.8)

where E0(x) is the instantaneous Young modulus and

W =
h0

R0
, (3.2.9)

where R0 is the radius corresponding to the equilibrium area A0, R0 =
√

A0/
√

π,
and h0 is the wall thickness. The values of K(x), m, and n of veins are defined differ-
ently from those of arteries because when it concerns veins, their possible collapse
in the event of negative transmural pressure must be considered (Carpenter and
Pedley, 2001; Toro and Siviglia, 2013; Murillo, Navas-Montilla, and García-Navarro,
2019). Collapsed veins typically show a buckled, dumbbell shape configuration with
the opposite sites of interior walls touching each other, but yet with some blood flow-
ing in the two extremes (Spiller et al., 2017; Carpenter and Pedley, 2001).
The elastic tube law in the PDE form is then obtained deriving Eq. (3.2.6) with re-
spect to time t, as proposed by Leibinger et al. (2016) and Bertaglia (2019),

∂p
∂t

=
K
A
(mαm − nαn)

∂A
∂t

, (3.2.10)

and substituting the continuity equation (3.2.1a) in Eq. (3.2.10),

∂p
∂t

+
K
A
(mαm − nαn)

∂(Au)
∂t

= 0. (3.2.11)

Thus, the parameter d(x, t) in Eq. (3.2.1c) is defined as

d =
K
A
(mαm − nαn). (3.2.12)

Hence, d accounts for the elastic contribution of the vessel wall and is written equally
in the elastic and viscoelastic formulation of the tube law.

Since the constitutive tube law in the a-FSI system (3.2.1) accounts for the vis-
cous contribution of the vessel wall behaviour, the source term S(x, t) is found on
the right–hand side of Eq. (3.2.1c). This term includes all viscoelastic parameters. In
order to define the source term S(x, t), the Barlow’s formula (Avallone and Baumeis-
ter III, 1916) must be resorted,

σ = W(p − pext), (3.2.13)

together with the equation ϵ = αm − αn (Bertaglia, 2019). This latter, can be also
rewritten using Eq. (3.2.6) as

ϵ =
ψel

K
, (3.2.14)

where K(x) as defined in equations (3.2.7) and (3.2.8). Deriving with respect to time
t equations (3.2.13) and (3.2.14), we obtain

dσ

dt
= W

dp
dt

, (3.2.15)
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and
dϵ

dt
=

1
A
(mαm − nαn)

dA
dt

, (3.2.16)

respectively. Finally, substituting equations (3.2.15) and (3.2.16) into the constitutive
equation of the SLSM, as presented in Eq. (3.1.6), and using the continuity equation
(3.2.1a), the viscoelastic tube law as written in Eq. (3.2.1c) is obtained. Hence, the
source term S(x, t) is defined as

S =
1
τr

[
E∞

E0
K(αm − αn)− (p − pext)

]
. (3.2.17)

Eq. (3.2.17), and thus Eq. (3.2.1c), directly derive from the constitutive law of the
chosen SLSM, which is indeed characterized by three main parameters: the instan-
taneous Young modulus E0(x), the asymptotic Young modulus E∞(x) and the relax-
ation time τr(x). The interplay between these three parameters is defined through
the following equation (Bertaglia, Caleffi, and Valiani, 2020; Bertaglia et al., 2020):

τr = η
E0 − E∞

E2
0

, (3.2.18)

where η(x) is the viscosity coefficient of the SLSM.

Source term stiffness

It is worth highlighting that, under physiological conditions, the source term of
Eq. (3.2.17) in System (3.2.1) may become stiff depending on the spatial discretisa-
tion applied, ∆x (details on the spacial discretisation are given in Chapter 4, which
concerns the adopted numerical scheme). A source term is considered stiff when
(Müller, Montecinos, and Toro, 2013):

∆x
max{|βi|}
max{|λi|}

> 1, i = 1, . . . , N, (3.2.19)

where βi is the i-th eigenvalue of the Jacobian of S(Q), λi is the i-th eigenvalue of
A(Q), and N is the number of unknowns of the system (in this work N = 6). It
can be evaluated that max{|βi|} = 1/τr, which can reach values up to 5 order of
magnitude more than the maximum eigenvalue λi. Therefore, the relaxation time
parameter τr, related to viscoelasticity, plays a key role in determining the stiffness
of the problem.

Asymptotic limits

The two Young moduli in Eq. (3.2.17), E0 and E∞, are associated to the initial
and final phases of the material’s deformation, respectively. In a simple relaxation
experiment, the law defining how the apparent Young modulus E(t) of the material
gradually changes in time, from the instantaneous value to the asymptotic one, is the
so–called relaxation function (Lakes, 2009), which is explicated with Eq. (3.1.9). By
definition, when dealing with a simple elastic behaviour, the Young modulus is con-
stant in time (Lakes, 2009): E(t) = E∞ = E0. In fact, analysing the asymptotic limit
of Eq. (3.1.9), if τr → 0 ⇒ E(t) → E∞, thus leading to an elastic mechanism. Note-
worthy, through Eq. (3.2.19) it is observable that in this limit System (3.2.1) becomes
stiff. On the other hand, also an excessively long relaxation time, τr → ∞, does
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not allow the development of viscoelastic features, resulting E(t) → E0. In both
cases, the source term of Eq. (3.2.1c), defined in Eq. (3.2.17), tends to zero, S → 0,
which confirms that the formulation of S is coherent with the assumed mechanical
behaviour and consistent with the equilibrium limit (Bertaglia et al., 2021; Bertaglia,
Caleffi, and Valiani, 2020; Bertaglia et al., 2020). From this analysis, we can deduce
that the more E∞ → E0, the more the behaviour of the material becomes purely
elastic. Therefore, in the SLSM the ratio z = E∞/E0 can be seen as an index of the
viscoelasticity of the material. In the a-FSI model here discussed, this ratio is com-
puted by an empirical formula presented in Bertaglia et al. (2020), which is the result
of a calibration process carried out considering various hysteresis loops taken from
literature (Giannattasio et al., 2008; Salvi, 2012):

E∞

E0
= e−1.3·10−5η . (3.2.20)

3.2.3 Eigenstructure and Riemann Invariants

It can be demonstrated that System (3.2.1) is hyperbolic (Bertaglia, Caleffi, and
Valiani, 2020) and, in contrast with other approaches proposed in literature (e.g.,
Alastruey et al. (2011) and Montecinos, Müller, and Toro (2014)), this mathematical
model preserves its hyperbolicity even when considering the viscoelastic contribu-
tion of vessel walls without the need for any mathematical reformulation. Therefore,
the a-FSI system is called natively hyperbolic. Nevertheless, we highlight here that
System (3.2.1) is not strictly hyperbolic.
This section presents the nature of the characteristic fields of the a-FSI system, as
well as the quantities that are kept constant across these fields, namely the Riemann
Invariants (RIs) (Toro, 2009), considering only sub–critical flow cases. Because of hy-
perbolicity, the matrix A(Q) is diagonalizable with a diagonal matrix containing all
real eigenvalues λi, with i = 1, . . . , N, (N = 6, number of unknowns of the problem)

λ1 = u − c , λ2 = λ3 = λ4 = λ5 = 0 , λ6 = u + c ,

and a complete set of corresponding linearly independent (right) eigenvectors (Bertaglia,
Caleffi, and Valiani, 2020)

R1 = γ1



1
u − c

d
0
0
0

 , R2 = γ2



1
0

ρu2

A
0
0
0


, R3 = γ3



0
0
0
1
0
0

 ,

R4 = γ4



0
0
0
0
1
0

 , R5 = γ5



0
0
0
0
0
1

 , R6 = γ6



1
u + c

d
0
0
0

 ,
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where γi are arbitrary scaling factors. In this system, the wave speed c(x, t) results
(Bertaglia, Caleffi, and Valiani, 2020; Bertaglia et al., 2020)

c =

√
A
ρ

∂p
∂A

=

√
A d
ρ

=

√
K
ρ
(mαm − nαn), (3.2.21)

with the wall stiffness coefficient K(x), and the parameters m, and n defining the
mechanical properties of the vessel wall as introduced in Section 3.2.2.

It is recalled to the reader that to determine the λi–characteristic field of the hy-
perbolic system it is sufficient to evaluate the quantity ∇λi · Ri, with i = 1, . . . , N
and see whether it is equal or different from zero (Toro and Siviglia, 2013). In the
former case, the characteristic field is LD and associated to contact discontinuity
waves, whereas, in the latter case, the field is genuinely non–linear, hence related
to elementary waves, i.e., rarefactions and shock waves (as introduced in Section
3.1.2). The λi–characteristic fields with i = 2, 3, 4, 5 are LD, whereas the remaining
two fields, on waves λ1 and λ6, are genuinely non-linear outside the locus

G
(

m, n,
A
A0

)
= m(m + 2)αm − n(n + 2)αn, (3.2.22)

in the m-n-α space. The proof is omitted since it results equivalent to the one pre-
sented in Toro and Siviglia (2013). Indeed, the presence of Eq. (3.2.1c) in the a-FSI
system here treated does not give rise to additional contributions in the product
∇λi · Ri, with i = 1, 6, being λ1 and λ6 independent from the third component of
state variable Q, q3 = p. Thus, for the standard cases in which m > 0 and n ∈ [−2, 0]
(Toro and Siviglia, 2013; Shapiro, 1977; Müller and Toro, 2014b) the λ1 and λ6 char-
acteristic fields are confirmed to be genuinely non–linear.

To evaluate the Riemann Invariants associated to each characteristic field, the
following (N − 1) ordinary differential equations, with k = 1, . . . , N in this work,
need to be computed (Toro, 2009):

dq1

r(i)1

= · · · = dqk

r(i)k

= · · · = dqN

r(i)N

. (3.2.23)

These equalities relate the rate of change dqk of the k-th component qk of state vari-
able Q to the respective component r(i)k of the right eigenvector Ri corresponding
to the λi–wave family. Considering only the first three equations of the governing
hyperbolic system, for the first LD field, namely for λ2, it can be written:

dA
1

=
d(Au)

0
=

dp
ρu2

A

(3.2.24)

resulting in

ΓLD
1 = Au, ΓLD

2 = p +
1
2

ρu2. (3.2.25)

In this way, it is verified that quantities ΓLD
1 and ΓLD

2 are constant across contact
discontinuity waves. The LD fields associated to eigenvalues λ3, λ4 and λ5 assure
jumps of quantities A0, E0 and pext, consistently with the characterization of the a-
FSI system. Concerning the genuinely non–linear fields, for the first eigenvalues, λ1,
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the following relationship holds:

dA
1

=
d(Au)
u − c

=
dp
d

, (3.2.26)

which, recalling Eq. (3.2.21), returns

Γ(1)
1 = u +

∫ c(A)

A
dA, Γ(1)

2 = p −
∫

d(A)dA. (3.2.27)

Finally, for the last eigenvalue, λ6, the following relationship holds:

dA
1

=
d(Au)
u + c

=
dp
d

, (3.2.28)

which gives

Γ(6)
1 = u −

∫ c(A)

A
dA, Γ(6)

2 = p −
∫

d(A)dA. (3.2.29)

Since the second Riemann Invariant results the same in the two genuinely non–linear
fields, it is considered just once and labeled as Γ3 in the following, whereas the first
Riemann Invariants associated to λ1 and λ6 are labeled as Γ1 and Γ2, respectively.

It is worth noticing that the integral in Γ3 can be analytically computed, resulting
in

Γ3 = p − K (αm − αn) . (3.2.30)

The same holds true for Γ1 and Γ2, but only when dealing with arteries, namely

Γ1 = u + 4c, Γ2 = u − 4c. (3.2.31)

When available, the analytical expressions of the three RIs associated with the
genuinely non–linear fields are employed in the model, within their range of ap-
plicability, to reduce the computational cost. Through the use of Γ1, Γ2 and Γ3 it
is possible to implement inlet and outlet BCs. At the inlet, i.e., the aortic root, a
flow rate/velocity can be either prescribed or simulated using a cardiac contraction
model, whereas at the outlet, namely at all terminal vessels of the network, the pres-
sure is typically prescribed. The numerical coupling at the inlet and outlet sections is
presented in Section 4.2.2 of this Thesis. Moreover, the RIs here–presented are used
for the numerical implementation of junctions for both elastic and viscoelastic cases,
as further discussed in Section 4.2.2.

3.3 0-D boundary conditions

3.3.1 Cardiac contraction model

The cardiac contraction model includes the left atrium (LA), the left ventricle
(LV), and the adjacent valves, i.e., mitral valve (MV) and aortic valve (AV). The pul-
monary venous flow rate (PVFR) entering the LA is prescribed as a function of time.
The cardiac contraction, represented in Figure 3.6, model is employed as inlet BC for
the vascular model, as described in Sect. 4.2.2.

Cardiac chambers

The LA and LV are modelled through the time–varying elastance function E(t).
The elastance is the reciprocal of the heart chamber compliance (Sun et al., 1995;
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FIGURE 3.6: Schematic representation of the lumped–parameter (0-
D) model representing the left heart. The cardiac contraction model
operates as inlet boundary condition for the vascular network, with
coupling site at the aortic root. Ec and Rc are the elastance function
and resistive term, respectively, for the left atrium, c = LA, or left
ventricle, c = LV. Bv and Lv are the Bernoulli coefficient and blood
inertance of the valve, respectively, for the mitral valve, v = MV, or

the aortic valve, v = AV.
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Mynard, 2011), and is a measure of the the heart chamber stiffness as it relates the
pressure in the cavity p(t) with the cavity volume v(t) by

p(t) = E(t)
[
v(t)− vp0

]
, (3.3.1)

where vp0 is the unstressed volume of the heart chamber. Mimicking the myocardium
contraction, the elastance changes between its extrema. For a given cardiac state, the
time–varying elastance curve is assumed to remain unchanged and independent of
alterations on the load (Suga, Sagawa, and Shoukas, 1973). However, according to
previous findings (Shroff, Janicki, and Weber, 1983; Shroff, Janicki, and Weber, 1985;
Campbell et al., 1982; Little and Freeman, 1987; Latson et al., 1986), the heart cham-
ber pressure is not only related to volume via the elastance function, but also to the
heart chamber outflow, qout, through a source resistance term, Rs. Hence, Eq. (3.3.1)
is rewritten to account for this flow rate dependence as

p(t) = E(t)
[
v(t)− vp0

]
− Rsqout(t). (3.3.2)

Performing a basic dimensional analysis, Eq. (3.3.2) is consistent as E is expressed
as a pressure–to–volume ratio, and Rs, being a resistive term, is expressed as a
pressure–to–flow rate ratio. The proportionality relation between pressure p and
flow rate qout through the resistive term is consistent with the electric–hydraulic
analogy frequently used in the lumped-parameters models (Formaggia, Quarteroni,
and Veneziani, 2009), and introduced in Section 2.2.2.
The resistive term, Rs, is not constant but it is proportional to the pressure that would
be achieved if there was no outflow (Shroff, Janicki, and Weber, 1985), namely

Rs = KsE(t)
[
v(t)− vp0

]
= Ks pisov, (3.3.3)

where pisov is the isovolumic pressure, and Ks is a constant. Substituting Eq. (3.3.3)
in Eq. (3.3.2), the final equation describing how the cavity pressure varies over time
is obtained straightforwardly (Mynard, 2011):

p(t) = E(t)
[
v(t)− vp0

]
[1 − Ks qout(t)] . (3.3.4)

It can be easily proven that Eq. (3.3.4) is dimensionally consistent.
The elastance E(t) is defined by the ‘double-Hill’ function (Mynard, 2011; Stergiop-
ulos, Meister, and Westerhof, 1996; Segers et al., 2000; Maksuti et al., 2016)

E(t) =
[

Emax − Emin

max(H1(t)H2(t))

]
H1(t)H2(t) + Emin, (3.3.5)

where Emin and Emax are the minimal and maximal values of the elastance, respec-
tively. Emin governs diastolic passive stiffness, hence the filling phase of the chamber
(Stergiopulos, Meister, and Westerhof, 1996), whereas Emax is considered to be a mea-
sure of systolic contractility (Segers, Stergiopulos, and Westerhof, 2000; Mynard et
al., 2011; Simakov, 2019). Functions H1(t) and H2(t),

H1(t) =
(t̄/τ1)

m1

1 + (t̄/τ1)m1
and H2(t) =

1
1 + (t̄/τ2)m2

, (3.3.6)

govern the ascending (contraction) and descending (relaxation) tracts of the E(t)
curve, respectively, and they are described by shape mi and time τi parameters, with
i = 1, 2. In Eq. (3.3.6), t̄ is equal to t − tonset, with tonset the onset of contraction. The
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FIGURE 3.7: Pulmonary venous flow rate entering the left atrium in
one cardiac cycle: reference (black solid line) and parametrised (gray

solid line) via a Fourier function.

cavity volume v(t) is calculated using the continuity equation

dv
dt

= qin(t)− qout(t), (3.3.7)

where qin(t) and qout(t) are the flow rates entering and leaving the heart chamber.

Cardiac valves

Valve dynamics, described by the trans–valvular blood flow rate, q(t), and the
opening state of the valve, ζ(t), ranging from 0 to 1, depend on the pressure differ-
ence across the valve, ∆p(t). Valve dynamics over time is expressed via a system of
ODEs (Mynard, 2011),

dq
dt

=
1

L(t)
[∆p(t)− B(t)q(t) |q(t)|] , (3.3.8a)

dζ

dt
= F (ζ, Kvo, Kvc, ∆p) =

{
[1 − ζ(t)]Kvo ∆p(t) if ∆p(t) > 0,
ζ(t)Kvc ∆p(t) if ∆p(t) < 0,

(3.3.8b)

where the coefficients B(t) and L(t) are Bernoulli resistance and blood inertance,
respectively. They are expressed as

B(t) =
ρ

2Av(t)2 and L(t) =
ρl

Av(t)
, (3.3.9)

where Av(t) is the orifice area, and l is the valve length (Mynard, 2011). The orifice
area ranges from Amin to Amax potentially accounting for a leaky or stenotic valve,

Av(t) = [Amax − Amin] ζ(t) + Amin. (3.3.10)

The rate of opening or closure of the valve, dζ/dt, depends on the pressure differ-
ence, such that when ∆p(t) is positive the valve opens and the coefficient Kvo is em-
ployed; otherwise, the valve closes and Kvc is used. High values of these coefficients
indicate a rapid opening and closing of the valve, respectively.
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FIGURE 3.8: Schematic representation of the lumped–parameter (0-
D), RCR Windkessel model operating as outlet boundary condition

at terminal vessels to simulate the microvasculature.

Pulmonary venous flow rate

The input to the cardiac contraction model, represented by the pulmonary ve-
nous flow rate, is prescribed as a discretised function of time. The PVFR entering the
LA accounts for the flow contributions of all the pulmonary veins. It has a double–
peaked shape, with two local maxima, i.e., the systolic (S) and diastolic (D) peaks,
and two local minima (Mynard, 2011; Mynard and Smolich, 2015; Sun et al., 1995),
as shown in Figure 3.7. In this work, PVFR is parametrised using a Fourier func-
tion (Westerhof et al., 1972; Parker, 2009) to simulate a decreased venous return and
allow the PVFR to be age–dependent as, conforming to Sun et al. (1995), the S/D
ratio increases with age. The PVFR parametrisation is accomplished by assigning
six parameters, i.e., the cardiac cycle duration, T, the total volume entering the left
atrium in one cardiac cycle, Vnet, and the four function extrema, and considering the
first five Fourier modes:

cn = cos(nτ), sn = sin(nτ), with n = 0, . . . , 4 (3.3.11)

where τ = π (−1 + 2t/T) and t is the time variable.

3.3.2 Microvasculature

By linearising the continuity equation (3.2.1a) and the momentum equation (3.2.1b)
with respect to reference state (A, Au, p) = (A0, 0, 0) and integrating them along the
vessel domain, i.e., the vessel length L, the system

Cdt( p̂ − pext) = qin − qout, (3.3.12a)
Ldtq̂ + Rq̂ = pin − pout, (3.3.12b)

is obtained, where qin(t) = q(0, t), qout = q(L, t), pin = p(0, t), pout = p(L, t) are flow
rates and pressures at the inlet and outlet sections of the domain, p̂(t) = L−1

∫ L
0 pdx,

q̂(t) = L−1
∫ L

0 qdx are mean pressure and flow rate, respectively, over the entire
domain. The coefficients

R = − f L
A2

0u
, L =

ρL
A0

, C =
A0L
ρc2

0
, (3.3.13)

are the resistance related to blood viscosity, inductance related to blood inertia, and
capacitance related to the wall compliance of the vessel, respectively, with c0 refer-
ence wave speed. System (3.3.12), known as L–circuit, represents the mathematical
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description of an electric circuit. As presented in Section 2.2.2, in this hydraulic–
electric analogy pressure corresponds to the electric voltage/potential, whereas flow
rate corresponds to current (Milišić and Quarteroni, 2004).
At the outlet of peripheral arteries, the 0-D, lumped–parameter model, named ei-
ther 3–element Windkessel model or RCR model, is habitually used to simulate the
effects of both terminal resistance and terminal compliance on the propagation of
pulse waves. The RCR model, depicted in Figure 3.8, is built in analogy with an elec-
tric circuit composed of a first resistor, with resistance R1, connected in series with a
second resistor, R2, which is in parallel combination with a capacitor of compliance
C (Reymond et al., 2009; Alastruey, Parker, and Sherwin, 2012; Willemet and Alas-
truey, 2014; Xiao, Alastruey, and Figueroa, 2014; Boileau et al., 2015; Bertaglia et al.,
2020). In this Thesis, the peripheral inductance is neglected since it has a minor ef-
fect on reflected waves under standard conditions (Alastruey et al., 2008; Alastruey,
Parker, and Sherwin, 2012). Moreover, to impose outflow conditions, the RCR model
has been defined to have time–constant external pressure, hence dt pext = 0. The re-
sulting system of equation for the 0-D lumped-parameter model reads (Bertaglia et
al., 2020):

C
dpC

dt
= q1D − qout, (3.3.14a)

R1 q1D = p(A1D)− pC, (3.3.14b)
R2 qout = pC − pout, (3.3.14c)

where p(A1D) and q1D = A1Du1D are the unknown variables at the final boundary of
the 1-D domain, pC is the pressure at the capacitor and pout and qout are the variables
at the outlet of the RCR unit.
The role of the first resistance R1 in the RCR model is to absorb incoming waves and
reduce artificial backward wave reflections in large arteries (Alastruey et al., 2008).
Therefore, R1 is defined to match the characteristic impedance Zc of the terminal 1-D
vessel at the equilibrium state:

R1 = Zc =
ρc0

A0
. (3.3.15)

It is worth noting that Eq. (3.3.15) is indeed Eq. (2.2.12) where PWV is characterised
with respect of the mathematical model at hand, hence with Eq. (??) at the equilib-
rium state.
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Chapter 4

Numerical scheme for networks of
viscoelastic vessels

4.1 Introduction

In this Thesis, the viscoelasticity of blood vessels is considered recurring to the
Standard Linear Solid Model (SLSM), consisting of a spring in series with a Kelvin-
Voigt (KV) unit, the latter composed by a spring and a dash-pot in parallel (Bertaglia,
Caleffi, and Valiani, 2020; Bertaglia et al., 2018; Gutierrez-Lemini, 2014; Lakes, 2009),
as presented in Section 3.1.1. Most of the models dealing with viscous effects of
vessels make use only of the KV unit (Alastruey et al., 2011; Ghigo et al., 2017a;
Liang, Guan, and Alastruey, 2018; Montecinos, Müller, and Toro, 2014; Mynard and
Smolich, 2015; Wang, Fullana, and Lagrée, 2015). The employment of the more com-
plex SLSM allows a better description of the real mechanical behaviour of biological
tissues because, in contrast with the KV model, it permits to include the definition of
the exponential relaxation of the stress (pressure) over time (Westerhof and Noorder-
graaf, 1970; Westerhof et al., 2019). This ability of the model is of great importance
since stress relaxation is one of the characteristic features of viscoelastic materials,
besides creep and hysteresis (Gurting and Sternberg, 1961; Lakes, 2009).

As introduced in Chapter 3, the viscoelastic SLSM constitutive tube law is added
in PDE form to the system of governing equations, composed of the equations of
conservation of mass and momentum, giving rise to the so–called a-FSI system
(Bertaglia, Caleffi, and Valiani, 2020; Bertaglia et al., 2020). The a-FSI blood flow
model, solved through an Asymptotic-Preserving (AP) IMEX Runge-Kutta scheme
in time and a Finite Volume (FV) method in space, has already been validated in
previous single–vessel studies, demonstrating its capability to correctly simulate
flow rate and pressure trends in patient-specific simulations (Bertaglia, Caleffi, and
Valiani, 2020; Bertaglia et al., 2020) and also assessing its sensitivity to uncertainties
inherent the viscoelastic parameters involved (Bertaglia et al., 2021).

The numerical model presented in this chapter aims at further developing the
recently proposed a-FSI blood flow model, investigating the treatment of networks
of viscoelastic vessels and thus the numerical modelling of junctions. Different ap-
proaches have been discussed in literature to deal with this topic: in Fullana and
Zaleski (2009), the junction is conceived as an elastic tank; in Mynard and Smolich
(2015), the junction is modelled via a control volume analysis; in Alastruey, Parker,
and Sherwin (2012), Reymond et al. (2009), and Sherwin et al. (2003b), the implemen-
tation of the model representing the junction relies on the Method of Characteristics
(MOC). However, none of these works take into account the viscoelastic contribu-
tion within the numerical implementation of the node, neglecting it in favor of a local
elastic approach. To the authors’ knowledge, only in Müller, Leugering, and Blanco
(2016) a numerical implementation of viscoelastic bifurcations is proposed, via the
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resistance and compliance of peripheral vascular beds. Third, a cardiac contraction
model representing the left–side heart is coupled to the vascular network as inlet BC.
The mathematical background of all these components is exhaustively presented in
Chapter 3. This Chapter focuses on the validation of the numerical scheme and the
chosen implementation of boundary conditions, in particular of junctions in net-
works of viscoelastic vessels. Therefore, different test cases have been considered,
characterised by increasing complexity and a diverse mechanical behaviour of the
vessels. The 0-D cardiac contraction model is not considered for the analyses con-
ducted in this Chapter, but it is considered, and properly validated, for the numerical
simulations and analyses presented in Chapter 5.

The rest of this Chapter is structured as follows. In Section 4.2 the numerical
model is discussed and the numerical treatment of BCs – at inlet, outlet and junctions
– is presented in detail for both the elastic and the viscoelastic cases. The procedure
here proposed to implement junctions is valid for both bifurcation and confluence
cases. Bifurcations are mostly related to arteries, whereas confluences are mostly
related to veins. In Section 4.3 various numerical results are shown and discussed.
At first, the trivial 2–vessel junction test is presented for arteries and veins, in both
elastic and viscoelastic regimes. In these tests, accuracy analysis of the model is
performed as well as well–balancing analysis. Then, a 3–vessel junction problem
is analysed concerning a benchmark elastic aortic bifurcation case and performing
the same test also with a viscoelastic configuration of the vessels. At last, results
concerning the simulation of two benchmark arterial networks are presented, again
for both the mechanical characterizations of vessel walls. Both the arterial networks
deal with arterial vessels with diameters typical of the human macro-circulation.
Blood flow within these vessels is characterized by high Womersley numbers indi-
cating that the respective flow is pulsating (Fung, 1997), strengthening the choice
of using the sophisticated a-FSI model to obtain realistic results. The first network
replicates an in vitro model of arterial tree representing the largest central systemic
arteries of the human vascular system, whereas the second one is a reduced version
of an anatomically detailed arterial network. Conclusions regarding the numerical
model and results presented in this Chapter are drawn in Section 4.4.

4.2 Numerical method

As discussed in Section 3.2.2, the a-FSI system (3.2.1) is a hyperbolic system pre-
senting a stiff relaxation term in Eq. (3.2.1c). Indeed, under physiological conditions,
the relaxation time can vary from values of order one to very small values if com-
pared to the time scale determined by the characteristic speeds of the system. There-
fore, to solve the problem, a robust numerical scheme that works efficiently for all
ranges of the relaxation time is needed. This represents a challenging task if one
aims at maintaining high order of accuracy and stability of the scheme (Ascher, Ru-
uth, and Spiteri, 1997; Pareschi and Russo, 2001; Pareschi and Russo, 2005). In this
Thesis, it was employed an asymptotic–preserving (AP) Implicit–Explicit (IMEX)
Runge–Kutta (RK) Finite Volume (FV) approach, which is thoroughly described in
the following.
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4.2.1 AP-IMEX Runge-Kutta Finite Volume scheme

The stiffly accurate IMEX-SSP2(3,3,2), characterized by 3 stages for both the im-
plicit and explicit parts and second order of accuracy, is adopted for the time dis-
cretization of System (3.2.1) (Pareschi and Russo, 2005). This scheme is AP and
asymptotic accurate in the zero relaxation limit, meaning that the consistency of
the scheme with the equilibrium system is guaranteed and the order of accuracy is
preserved in the stiff limit (Bertaglia et al., 2021). As typical for IMEX schemes, an
L-stable diagonally implicit Runge–Kutta (DIRK) method is used for the treatment
of the stiff part (here represented by the source terms), ensuring elevated robust-
ness; while an explicit strong–stability–preserving (SSP) scheme is provided for all
the non–stiff components of the system, to maximize the efficiency (Pareschi and
Russo, 2005).

For the space discretization, a second–order FV approach is considered, with a
uniform grid of length lv and nc,v number of cells for each v-th vessel, a mesh spacing
∆xv = lv/nc,v, and a global time step size ∆t = tn+1 − tn satisfying the CFL condition
(Toro, 2009):

∆t ≤ CFL
min{∆xv}

max{λ1, . . . , λ6}
, v = 1, . . . , nv , (4.2.1)

where λ1, . . . , λ6 are the eigenvalues of the system (detailed in Section 3.2.3) and nv
identifies the number of vessels considered. We highlight that a local time stepping
(LTS) procedure might also be considered to increment computational efficiency
(Müller et al., 2016). For ease of reading, the subscript v is omitted in the follow-
ing. On the i-th cell, Ii = [xi− 1

2
, xi+ 1

2
] with ∆x = xi+ 1

2
− xi− 1

2
, the chosen numerical

technique leads to the following final discretization of System (3.2.1):

Q(k)
i = Qn

i −
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∆x
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ãkj

[(
F(j)
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2
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i− 1
2

)
+
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2
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)
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(
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i

)
∆Q(j)
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]
+ ∆t
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∑
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(
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)
, (4.2.2a)

Qn+1
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s
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[(
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2
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(
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(
Q(k)

i

)
∆Q(k)
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]
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∑
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ωkS
(

Q(k)
i

)
. (4.2.2b)

Here, Qn
i is the vector of the cell–averaged variables at time tn.

Matrices ã = (ãkj) and a = (akj) are s × s matrices characterizing the explicit and
implicit stages, respectively, of the chosen IMEX RK scheme, while the coefficient
vectors ω̃ = (ω̃1, . . . , ω̃s) and ω = (ω1, . . . , ωs) represent the explicit and implicit
weights, respectively, with s identifying the number of the RK stages (Pareschi and
Russo, 2001; Pareschi and Russo, 2005). The resulting scheme is implicit in S

(
Q(k)

i

)
and explicit for all the rest. Moreover, being a DIRK scheme, both ãkj and akj are null
for j ≥ k. The set of explicit and implicit matrices and vectors are represented by a
double tableau in the usual Butcher notation (Pareschi and Russo, 2005):

c̃k ãk,j
ω̃T

k

ck ak,j
ωT

k
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where the coefficients c̃k and ck are given by

c̃k = ∑k−1
j=1 ãkj, ck = ∑k

j=1 akj.

For the specific IMEX-SSP(3,3,2) Runge–Kutta scheme employed in this Thesis, the
general tableaux given in the above are defined as follows,

0 0 0 0
1/2 1/2 0 0

1 1/2 1/2 0
1/3 1/3 1/3

1/4 1/4 0 0
1/4 0 1/4 0

1 1/3 1/3 1/3
1/3 1/3 1/3

Indeed, the explicit RK methods are characterised by non–zero entries that lie only
strictly below the diagonal of matrix ã. Entries at or above the diagonal would cause
the right–hand side of Eq. (4.2.2a) to involve Q(j)

i , giving a formally implicit method
(Bertaglia, 2019).
In equations (4.2.2a) and (4.2.2b), F is the vector of the numerical fluxes and D is
the vector of the non–conservative jumps, evaluated at each cell boundary through
the path–conservative Dumbser–Osher–Toro (DOT) Riemann solver (Dumbser and
Toro, 2011a; Dumbser and Toro, 2011b; Leibinger et al., 2016):

F i± 1
2
=

1
2

[
f
(

Q+
i± 1

2

)
+ f

(
Q−

i± 1
2

)]
− 1

2

∫ 1

0

∣∣∣A (
Ψ
(

Q−
i± 1

2
, Q+

i± 1
2
, s
))∣∣∣ ∂Ψ

∂s
ds, (4.2.3)

Di± 1
2
=

1
2

∫ 1

0
B
(

Ψ
(

Q−
i± 1

2
, Q+

i± 1
2
, s
)) ∂Ψ

∂s
ds. (4.2.4)

To achieve second–order accuracy also in space and to avoid spurious oscillations
near discontinuities, boundary extrapolated values Q∓

i± 1
2

are computed using a Total–

Variation–Diminishing (TVD) method, recurring, at each k-th RK step, to the classical
minmod slope limiter (Toro, 2009):

∆Q(k)
i = minmod(Q(k)

i − Q(k)
i−1, Q(k)

i+1 − Q(k)
i ), (4.2.5)

hence:
Q(k),∓

i± 1
2

= Q(k)
i ± 1

2
∆Q(k)

i . (4.2.6)

Integrals in equations (4.2.3) and (4.2.4) are approximated by a 3–point Gauss–
Legendre quadrature formula after that a simple linear path Ψ, connecting left to
right boundary values in the phase–space, is chosen (Bertaglia et al., 2018).

It is noted that the numerical method here presented has been demonstrated to
be exactly well–balanced (Bertaglia, Caleffi, and Valiani, 2020), hence exactly con-
serves a rest initial condition (C–property as defined in Bermudez and Vazquez
(1994)). Finally, another characteristic worth to be remarked is that, consistently
with the form of the source term in Eq. (3.2.1c), the chosen scheme can be refor-
mulated to obtain a totally explicit algorithm. This permits to avoid the adoption
of iterative procedures, like Newton–Raphson method, to solve the implicit terms,
leading to an additional consistent reduction of the computational cost with respect
to standard semi–implicit or fully implicit methods. We underline here that this ca-
pability of IMEX schemes, for which the implicit part can be rearranged to compute
the involved component of the state variable equation by equation, is valid for many
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applications and represents a consistent advantage of these methods. For further de-
tails on the totally explicit reformulation, the reader is referred to Bertaglia, Caleffi,
and Valiani (2020), Bertaglia et al. (2020), Bertaglia et al. (2021), and Pareschi and
Russo (2005).

4.2.2 Boundary conditions

The model presented in this work is characterized by three types of BCs: inlet,
outlet, and internal junctions BCs. All types of BCs have been implemented to ac-
count for the viscous contribution of the vessel wall. Particularly, in the previous
works related to the a-FSI blood flow model (Bertaglia et al., 2021; Bertaglia, Cal-
effi, and Valiani, 2020; Bertaglia et al., 2020), the pressure at boundary sections was
always evaluated neglecting the viscoelastic contribution of the tube law, in favour
of a local elastic approach. On the contrary, the here–proposed new approach em-
ploys an additional RI, namely Γ3, defined in Eq. (3.2.30), to consider the variation of
pressure in the 1-D domain induced by the wall viscoelasticity at boundaries. Inlet,
outlet, and junction BCs are presented in the following. Finally, the problem of main-
taining the high–order of accuracy of the scheme even at boundaries is discussed.

Inlet BC

The a-FSI system allowed to simulate different study tests and arterial network
configurations. Depending on the specific simulation at hand, either a prescribed
flow rate or a cardiac contraction model is used as inlet BC.

The prescribed flow rate is given as a function of time. In this case, the inflow
BC is implemented imposing at each RK step an inlet flow rate qin, recurring to the
Γ2 RI associated with the genuinely non–linear field at the proximal boundary of the
physical domain, defined as Γ(6)

1 in Eq. (3.2.29). To take into account viscoelasticity
at the boundary, once the inlet cross–sectional area Ain is computed from the inlet
prescription, the Γ3 RI is used in its analytical form, presented in Eq. (3.2.30), for the
evaluation of the pressure at the inlet section, pin. The prescribed flow rate as inlet
BC is used to perform numerical tests with both arteries and veins. In the case of
arterial numerical tests and networks, the RI Γ2 is employed in its analytical form,
defined in Eq. (3.2.31), with a consistent reduction of computational cost (Piccioli
et al., 2022a). With arterial network tests, the prescribed flow rate is characterised
by the typical waveform of the aortic flow rate and is assigned at the aortic root to
simulate the left ventricular ejection into the aorta.

The cardiac contraction model acts as inlet boundary condition to the 1-D model
vascular network. The flow rate through the aortic valve, qAV(t), is computed at
every time step and prescribed as the inflow to the aortic root. The coupling between
the cardiac contraction model and the arterial domain occurs at the aortic root and
follows the one presented for the computation of the inlet BC with the prescribed
flow rate. Thus, it is accomplished using the RIs Γ2 and Γ3, i.e., Eq. (3.2.31) and
(3.2.30), to consider the viscoelastic contribution of the wall of the aorta even at the
inlet boundary section, namely the aortic root (Piccioli et al., 2022b). In the cardiac
contraction model, the time–dependent variables presented in Sect. 3.3.1 must be
computed and updated for every time step. These variables are the valve’s flow rate,
qv, and state, ζv, and the chambers volume, vc. Subscript c identifies either the LA
or the LV, whereas subscript v identifies either the MV or AV. Equations (3.3.8a) and
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(3.3.8b) are integrated in time following the IMEX RK method, treating the equations
explicitly since they do not contain stiff terms. Thus, the time discretisation of Eq.
(3.3.8a) reads

q(k)v = qn
v + ∆t

k−1

∑
j=1

ãkj

[
1

L(j)

(
∆p(j) − B(j)q(j)

∣∣∣q(j)
∣∣∣)] , (4.2.7a)

qn+1
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v + ∆t
s
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ω̃k

[
1

L(k)

(
∆p(k) − B(k)q(k)

∣∣∣q(k)∣∣∣)] . (4.2.7b)

Here, qn
v is the flow rate at time tn, and qn+1

v at tn+1 = tn + ∆t. Matrix ã = (ãkj) and
vector ω̃ = (ω̃1, . . . , ω̃s) are the coefficients and weights, respectively, characterising
the explicit stages of the chosen IMEX RK scheme, as presented in Section 4.2.1. The
same time discretisation scheme is applied to the opening state of the valve to obtain
the explicit discretisation of Eq. (3.3.8b)
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For the mitral valve, ∆pMV is the pressure difference between the LA and the LV,
whereas, for the aortic valve, ∆pAV is the pressure difference between the LV and
the first section of the aortic root. Heart chamber pressures was calculated using
the stress–strain relationship given by Eq. (3.3.4). Finally, applying the IMEX RK
method to Eq. (3.3.7), the chamber volume at each RK time step is computed using
the inlet and outlet flow rates calculated at the same time step as in Eq. (4.2.7a), and
for the final update those calculated by Eq. (4.2.7b), i.e.,

v(k)c = vn
c + ∆t

k−1

∑
j=1

ãkj

(
q(j)

v,in − q(j)
v,out

)
, (4.2.9a)

vn+1
c = vn

c + ∆t
s

∑
k=1

ω̃k

(
q(k)v,in − q(k)v,out

)
. (4.2.9b)

For the LA, qv,in is the pulmonary venous flow rate and qv,out is qMV , whereas for the
LV they are qMV and qAV , respectively.

Outlet BC

At outlet sections, namely at the last cell of each terminal vessel of the network,
the 3–element Windkessel/RCR model presented in Section 3.3.2 is coupled with the
1-D model through the solution of the problem at the interface. A null outlet pres-
sure pout = 0 is assigned in these sections to simulate the blood pressure when the
flux reaches the venous system (Boileau et al., 2015; Xiao, Alastruey, and Figueroa,
2014). Following, the variable pC presented in System (3.3.14) must be computed.
This system has two algebraic equations, equations (3.3.14b) and (3.3.14c), and one
ODE, Eq. (3.3.14a). Hence, it can be rewritten as a unique ODE problem:

dpC

dt
=

1
C

[
1

R1
(p(A∗)− pC)−

1
R2

(pC − pout)

]
. (4.2.10)
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In this work, this ODE is integrated in time following the IMEX RK method pre-
viously discussed in Section 4.2.1, treating the equation explicitly since it does not
involve stiff terms. Thus, the explicit RK discretization of Eq. (4.2.10) reads

p(k)C = pn
C + ∆t
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ãkj
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[
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Following the same approach used at the inlet interface, in order to couple the 1-D
domain with the RCR model, the Γ1 RI associated with the genuinely non–linear
field, defined as Γ(1)

1 in Eq. (3.2.27), is employed. This yields to a non–linear equa-
tion in A∗, solved with Newton’s method (see Bertaglia et al. (2020) for more de-
tails). Once A∗ is obtained, the velocity u∗ is computed via Γ1 and the pressure p∗

is computed through the elastic tube law, when the problem is elastic, or using Γ3
in Eq. (3.2.30) to account also for the viscous contribution of the vessel wall when
considering the full viscoelastic problem. Again, when dealing with arteries, the
analytical form of the RI Γ1 in Eq. (3.2.31) is considered.

It is worth to underline that the application of the IMEX RK scheme at the inlet
and outlet BCs increases the consistency of the model, maintaining an homogeneous
approach among physical domain and boundary sections.

Junction BC

Besides inlet and outlet sections, junctions among two or more blood vessels in-
volve internal boundaries where specific conditions must be imposed to couple the
1-D domains of the branching vessels. The present work proposes a method able to
face both the simplest 2–vessel junction, consisting in two linked vessels with either
the same or different geometrical and mechanical characteristics, and junctions con-
sisting in more branching vessels (even more than three). In this last case, the model
is able to deal with both the bifurcation case, in which a parent vessel separates in
two or more daughter vessels (occurring mostly in arterial networks) and the conflu-
ence case, in which two or more parent vessels merge in one daughter (generally in
venous networks). In Figure 4.2 the scheme of a generic 3–vessel junction is shown.

Generally, 3-D analyses of flow at either bifurcations or confluences show that
blood flow becomes very complex at junctions, with the possible development of
transient separation and of secondary flows (Quarteroni, Manzoni, and Vergara,
2017; Xiao, Alastruey, and Figueroa, 2014). However, these issues are commonly
confined in the proximity of the junction and their effects on pulse wave propaga-
tion are neglected due to the long wavelength approximation (Alastruey, Parker, and
Sherwin, 2012). Moreover, energy losses at junctions are neglected in this work, due
to their little contribution (Matthys et al., 2007; Wang, Fullana, and Lagrée, 2015),
although some studies account for them (for example considering branching angles
(Formaggia, Lamponi, and Quarteroni, 2003; Mynard and Smolich, 2015; Steele et
al., 2003; Stettler, Niederer, and Anliker, 1981). The inclusion of coefficients of pres-
sure losses at junctions is beyond the scope of this work and will be considered for
future developments.

Junction BC is numerically implemented through the solution of a non–linear
system of equations that derives from the RP arising at these internal boundaries, in



4.2. Numerical method 59

q3*
A3*
p3*

1

2

3

q1
A1
p1

q2
A2
p2

q3
A3
p3

q1*
A1*
p1*

q2*
A2*
p2*

FIGURE 4.2: 3–vessel junction scheme. Reading the figure from left
to right, the scheme shows a bifurcation, whereas reading the figure
from right to left, it shows a confluence. With respect to the interpre-
tation related to the Junction Riemann Problem, dashed lines repre-
sent rarefaction waves, whereas dot–dashed lines represent contact
discontinuity waves. The initial conditions of the problem are given
by the vector of averaged state variables of the afferent cells of ves-
sel domains, i.e., qj = Ajuj, Aj and pj, with j = 1, 2, 3, whereas the
intermediate constant states are q∗j = A∗

j u∗
j , A∗

j and p∗j , again with
j = 1, 2, 3.

the following called Junction Riemann Problem (JRP) (Colombo, Herty, and Sachers,
2008; Colombo and Garavello, 2008).

The solution of elementary one–dimensional RPs involving a set of two balance
laws, one for the mass and one for the momentum, is characterized by a single inter-
mediate constant state (the so called star region), separated from the initial imposed
constant states by non–linear waves, such as shock waves or rarefactions. If the
addition of further equations to the set of governing equations results in the enrich-
ment of the eigenstructure of the system with null eigenvalues, as it happens for
the augmented System (3.2.1), stationary contact waves become part of the solution.
Restricting our analysis to sub–critical flows (i.e., u < c) the non–linear waves are
directed from the centre towards the periphery and the intermediate states become
two, separated from each other by the new contact discontinuity waves (Toro and
Siviglia, 2013). The discontinuity between the intermediate states is stationary and
remains located at the initial discontinuity of the initial conditions. Now, conceiv-
ing the position of the initial discontinuity as a junction section between branches, it
becomes clear that the RP partial solution related to each branch consists only of an
initial state separated from a single intermediate state by a non–linear wave, while
the intermediate states of the two adjacent branches are separated from each other
by the contact discontinuities.

The extension of this interpretation to the JRP for a confluence of N branches into
a node is straightforward. Again, the initial state of each branch is separated from
the star region of the same branch by a non–linear wave, while the N intermediate
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states of the N branches, which are adjacent to the node, are separated from each
other by contact waves. For an application of the same approach to different balance
laws, the reader is addressed to Bertaglia and Pareschi (2021), Elshobaki, Valiani,
and Caleffi (2018), Elshobaki, Valiani, and Caleffi (2019), Müller and Blanco (2015),
and Müller, Leugering, and Blanco (2016).

To properly define a simplified solution of the JRP suitable to act as a junction
mathematical model, two assumptions are made a priori:

1. The flux is sub–critical, namely the speed index, defined as the ratio between
velocity of the fluid and celerity (Shapiro, 1977), is always less than one and
therefore the non–linear waves joining 1-D domain states and star region states
are directed from the central node towards the periphery (Toro, 2009);

2. Both the resulting non–linear waves are rarefactions, hence the JRP is treated
following a Two–Rarefactions Riemann Solver (TRRS) (Toro, 2009).

As an example, referring to Figure 4.2, which clearly illustrates the so–conceived
JRP, the initial conditions of the problem are given by the vector of averaged state
variables of the afferent cells of vessel domains, i.e., qj = Ajuj, Aj and pj, here with
j = 1, 2, 3, whereas the intermediate constant states are q∗j = A∗

j u∗
j , A∗

j and p∗j , again
with j = 1, 2, 3.

Given a general junction connecting N vessels, Q1D
j , j = 1, . . . , N, constant states

are identified at time t at the junction section, provided by the vectors of averaged
state variables at the interface, one for each adjacent cell of the N afferent vessels.
If variables are discontinuous across the interface, N new intermediate states orig-
inate at the node at time t + ∆t. This set is formed by the starred constant states,
Q∗

j , j = 1, . . . , N, which identify the 3N unknowns of the JRP: q∗j , A∗
j and p∗j . As-

suming that the non–linear waves are always rarefactions, it is possible to write the
non–linear system at junctions recurring to the RIs related to both the genuinely
non–linear fields, Γ1,2,3 defined in equations (3.2.27) and (3.2.29), which identify the
variables conserved on rarefaction waves, and the RIs related to the LD fields, ΓLD

1,2
defined in Eq. (3.2.25), which indicate, instead, variables conserved across contact
discontinuities. As direct consequence of the inclusion of the RIs of the LD fields
in the system, the conservation of mass (Au) and the conservation of total energy
(p + 1

2 ρu2) at junctions is granted. Thus, the resulting non–linear system arising at
each viscoelastic junction, for both arterial and venous systems, reads as follows:

N

∑
j=1

Θnj A
∗
j u∗

j = 0, (4.2.12a)(
p∗1 +

1
2

ρu∗2

1

)
−

(
p∗j +

1
2

ρu∗2

j

)
= 0, j = 2, . . . , N, (4.2.12b)

u∗
j − u1D

j + Θnj

∫ A∗
j

A1D
j

c(A)

A
dA = 0, j = 1, . . . , N, (4.2.12c)

p∗j − p1D
j −

∫ A∗
j

A1D
j

d(A)dA = 0, j = 1, . . . , N, (4.2.12d)

where Θnj is an auxiliary function such that:

Θnj =

{
+1, if ξnj = Lj,
−1, if ξnj = 0,

(4.2.13)
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with ξnj local coordinate of the j-th vessel, evaluated at node nj, and Lj vessel length.
Noteworthy, that Eq. (4.2.12c) derives from Γ1 and Γ2, whereas Eq. (4.2.12d) derives
from Γ3. The non–linear system is solvable applying a Newton–Raphson iterative
method, using Q1D

j as initial guess for Q∗
j (Alastruey et al., 2012).

It is worth stressing that the mechanical behaviour attributed to vessel walls af-
fects the formulation of the junction non–linear system, namely if the vessel is cho-
sen to behave in an elastic or in a viscoelastic way. Indeed, when choosing a simple
elastic vessel wall, System (4.2.12) can be simplified as (Alastruey et al., 2012; Müller
and Toro, 2014a):

N

∑
j=1

Θnj A
∗
j u∗

j = 0, (4.2.14a)(
p(A∗

1) +
1
2

ρu∗2

1

)
−

(
p(A∗

j ) +
1
2

ρu∗2

j

)
= 0, j = 2, . . . , N, (4.2.14b)

u∗
j − u1D

j + Θnj

∫ A∗
j

A1D
j

c(A)

A
dA = 0, j = 1, . . . , N. (4.2.14c)

Hence, in the elastic case the only unknown variables are the area A∗
j and the flow

rate q∗j = A∗
j u∗

j , being the pressure p(A∗
j ) calculated a posteriori via the elastic tube

law (Bertaglia, Caleffi, and Valiani, 2020):

p = pext + K
[(

A∗

A0

)m

−
(

A∗

A0

)n]
. (4.2.15)

High order of accuracy at boundaries

As discussed in Section 4.2.1, the proposed AP-IMEX RK FV scheme is second–
order accurate both in time and space. To maintain the second–order of accuracy of
the scheme in the whole domain, slope values ∆Qi, i = 1, . . . , nc, are computed in
every cell of the physical grid, even in those adjacent to either the external or the
internal boundary sections of the network, namely inlet/outlet or junction interface,
respectively. Following the minmod slope limiter (4.2.5), at each k-th RK step, for
each cell i, the slope ∆Q(k)

i is computed requiring the vector of averaged variables of

both adjacent cells: Q(k)
i−1 and Q(k)

i+1 (Toro, 2009). However, cells adjacent to the inlet

(resp. outlet) present a complication since Q(k)
i−1 (resp. Q(k)

i+1) is missing. The same

applies at junctions, where a daughter (resp. parent) vessel misses Q(k)
i−1 (resp. Q(k)

i+1).
This issue is overcame by computing the vector of variables at boundaries as pre-
sented in Section 4.2.2 and assuming that these values are constant within the miss-
ing boundary cells, which are conceived as ghost cells. The so–obtained ghost cell
vector of averaged variables, Q(k)

g , compensates for the missing one in the slope com-
putation. Hence, for the evaluation of the slope of the first physical cell of the inlet
vessel of the network as well as for the first cell of daughter vessels:

∆Q(k)
1 = minmod(Q(k)

1 − Q(k)
g , Q(k)

2 − Q(k)
1 );

while the formulation of the minmod slope limiter in the last physical cell of each
peripheral vessel coupled with the RCR model and in the last cell of parent vessels
reads:

∆Q(k)
nc = minmod(Q(k)

nc − Q(k)
nc−1, Q(k)

g − Q(k)
nc ).
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Once ∆Q(k)
i is computed, boundary extrapolated values within cell i are obtained

through Eq. (4.2.6) and fluxes and non–conservative jumps can be evaluated with
equations (4.2.3) and (4.2.4), respectively. We remark that the proposed methodol-
ogy can be extended to higher–order accuracy in space recurring to different spa-
tial reconstruction, for instance adopting WENO approaches (Cavallini, Caleffi, and
Coscia, 2008).

4.3 Numerical results

Following (Müller, Leugering, and Blanco, 2016), the numerical implementation
of the junction is first validated via a trivial 2–vessel junction case, which consists
in two subsequent compliant vessels linked by a single junction BC, for which the
reference solution is given by the simulation of the single continuous vessel not in-
terrupted by the junction. This case is implemented for both vessel types, i.e., artery
and vein, prescribing a pulse wave as inlet BC. An accuracy analysis is performed
with these two tests to verify the conservation of the second order of accuracy of
the scheme in the whole domain, even when junctions are considered. Moreover,
dead–body simulations, i.e., the steady case with null velocity and uniform pressure,
are performed to confirm that no numerical errors, such as spurious velocities, arise
during the simulation, therefore respecting the well–balancing of the scheme. Sub-
sequently, a 3–vessel junction test of an ideal human aortic bifurcation is performed.
Finally, two examples of human arterial networks are considered, accounting for
both elastic and viscoelastic behaviour of the vessels to depict differences deriving
from the choice of the mechanical characterization of the vessel wall. When con-
sidering the viscoelastic rheological behaviour, BCs at each junction composing the
network, as well as at inlet and outlet sections, are implemented as described in
Sections 4.2.2, 4.2.2 and 4.2.2.

In all the performed simulations, if not otherwise stated, CFL = 0.9 is imposed.
Moreover, for ease of reading, information regarding spatial and temporal discretiza-
tion is generally given in the caption of figures showing results of the specific tests.
Numerical data of viscoelastic simulations of the aortic bifurcation test (Section 4.3.2)
and of the two arterial networks (Sections 4.3.3 and 4.3.3) are made publicly available
as Supporting Material of Piccioli et al. (2022a) in order to facilitate and encourage
further analysis.

TABLE 4.1: Parameters of the 2–vessel junction test, valid for a generic
artery (AA) and a generic vein (VV), with l vessel length, R0 equilib-
rium internal radius, h0 wall thickness, p0 equilibrium internal pres-
sure, E0 instantaneous Young modulus, E∞ asymptotic Young modu-
lus, τr relaxation time and q̂, σ̂, t̂ additional parameters of the test used
for the inlet condition, defined in Eq. (4.3.1). Note that parameters are

equal for both parent and daughter vessels in this trivial test.

l R0 h0 p0 E0 E∞ τr q̂ σ̂ t̂
Test [cm] [cm] [mm] [mmHg] [MPa] [MPa] [ms] [cm3s−1] [s−2] [s]
AA 20 1.0 0.5 80 2.3 1.6 3.5 100 10000 0.025
VV 20 0.5 0.5 10 3.0 2.6 0.022 10 1000 0.05
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TABLE 4.2: Parameters of the accuracy analysis performed for the 2–
vessel junction test, considering a generic artery (AA) and a generic
vein (VV), referring to Eq. (4.3.2). Values are chosen within standard

ranges found in the human body.

l T0 Ã ã P̃ p̃ Ẽ0 ẽ h0 E∞ τr
Test [cm] [s] [mm2] [mm2] [kPa] [kPa] [MPa] [MPa] [mm] [MPa] [ms]
AA 20 1.0 400 40 10 2.0 2.0 0.2 1.5 1.6 0.36
VV 20 1.0 40 4.0 1.5 0.3 1.76 0.1 0.3 1.5 0.06

be noticed that for the VV case the viscoelastic effect is less evident than in the AA
case due to the different viscoelastic parameters assigned to the two vessel walls.
Furthermore, different characteristics between cases AA and VV can be observed
in terms of dimensionless cross–sectional area α, due to the diverse mechanical be-
haviour associated to arteries and veins. Indeed, the tube law used for veins defines
a more complex behaviour with respect to the one used for arteries, having different
coefficients K, m, and n in Eq. (3.2.12), which, for veins, account also for collapsing
states.

Accuracy analysis and well–balancing property

The accuracy analysis is performed with the 2–vessel junction test for both the ar-
terial (AA) and the venous (VV) cases. In contrast with the above discussed tests, for
these analyses periodic BCs are chosen. Furthermore, a sinusoidal initial condition
is imposed as follows:

QIC =



AIC
qIC
pIC

A0, IC
E0, IC
pext, IC

 =



Ã + ã sin
( 2πx

l

)
− ã l

T0
cos

( 2πx
l

)
P̃ + p̃ cos

( 2πx
l

)
Ã + ã sin

( 2πx
l

)
Ẽ0 + ẽ sin

( 2πx
l

)
P̃ + p̃ cos

( 2πx
l

)


. (4.3.2)

Parameters for these analyses are listed in Table 4.2. The reference solution is simu-
lated with nc = 8019 number of cells, and for each state variable (area A, flow rate
Au, and pressure p) L1, L2 and L∞ norms are evaluated according to Caleffi, Valiani,
and Bernini (2006):

L1 =
nc

∑
l=1

|ι(xl , tn)− ι̂nl |∆x, (4.3.3a)

L2 =

√
nc

∑
l=1

(ι(xl , tn)− ι̂nl )
2∆x, (4.3.3b)

L∞ = max|ι(xl , tn)− ι̂nl |, 1 ≤ l ≤ nc, (4.3.3c)

where ι(xi, tn) and ι̂nl are the analytical and numerical point–values of the state vari-
able. Results accounting for an elastic vessel wall behaviour are presented in Table
4.3, whereas those accounting for a viscoelastic vessel wall behaviour are presented
in Table 4.4. The second–order accuracy is achieved for all the evolutionary variables
in both the cases, AA and VV.
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TABLE 4.3: Results of the accuracy analysis performed for the 2–
vessel junction test, concerning a generic artery (AA) and a generic
vein (VV). Vessels wall are characterised by an elastic mechanical be-
haviour. Errors are computed for variables A, Au and p in terms of
norms L1, L2 and L∞, showing the corresponding order of accuracy.
The final time of the simulation is tend = 0.025 s for the AA test, and

tend = 0.10 s for the VV test.

Test Variable nc L1 O(L1) L2 O(L2) L∞ O(L∞)

AA

A

33 3.69 × 10−8 - 6.48 × 10−8 - 1.65 × 10−7 -
99 3.96 × 10−9 2.03 7.07 × 10−9 2.02 1.86 × 10−8 1.99

297 4.34 × 10−10 2.01 7.79 × 10−10 2.01 2.07 × 10−9 2.00
891 4.75 × 10−11 2.01 8.54 × 10−11 2.01 2.28 × 10−10 2.01
2673 4.74 × 10−12 2.10 8.53 × 10−12 2.10 2.28 × 10−11 2.10

Au

33 2.10 × 10−7 - 3.72 × 10−7 - 9.37 × 10−7 -
99 2.77 × 10−8 1.84 4.87 × 10−8 1.85 1.29 × 10−7 1.95

297 3.24 × 10−9 1.95 5.70 × 10−9 1.95 1.47 × 10−8 1.98
891 3.62 × 10−10 2.00 6.37 × 10−10 2.00 1.63 × 10−9 2.00
2673 3.64 × 10−11 2.10 6.41 × 10−11 2.10 1.63 × 10−10 2.10

p

33 8.61 - 1.53 × 101 - 3.62 × 101 -
99 9.43 × 10−1 2.01 1.69 2.01 4.03 2.00

297 1.04 × 10−1 2.01 1.87 × 10−1 2.01 4.48 × 10−1 2.00
891 1.14 × 10−2 2.01 2.05 × 10−2 2.01 4.91 × 10−2 2.01
2673 1.14 × 10−3 2.10 2.05 × 10−3 2.10 4.91 × 10−3 2.10

VV

A

33 2.98 × 10−8 - 7.93 × 10−8 - 5.83 × 10−7 -
99 3.30 × 10−9 2.00 9.17 × 10−9 1.96 8.07 × 10−8 1.80

297 3.58 × 10−10 2.02 1.03 × 10−9 1.99 9.89 × 10−9 1.91
891 3.91 × 10−11 2.01 1.15 × 10−10 2.00 1.12 × 10−9 1.98
2673 3.93 × 10−12 2.10 1.16 × 10−11 2.09 1.14 × 10−10 2.08

Au

33 2.00 × 10−8 - 6.39 × 10−8 - 5.07 × 10−7 -
99 2.32 × 10−9 1.96 7.68 × 10−9 1.93 7.52 × 10−8 1.74

297 2.72 × 10−10 1.95 9.68 × 10−10 1.89 9.40 × 10−9 1.89
891 3.06 × 10−11 1.99 1.13 × 10−10 1.96 1.13 × 10−9 1.92
2673 3.14 × 10−12 2.08 1.16 × 10−11 2.07 1.17 × 10−10 2.07

p

33 1.03 - 2.34 - 1.47 × 101 -
99 1.20 × 10−1 1.96 3.22 × 10−1 1.81 2.70 1.54

297 1.37 × 10−2 1.97 4.21 × 10−2 1.85 3.75 × 10−1 1.80
891 1.53 × 10−3 2.00 4.90 × 10−3 1.96 4.57 × 10−2 1.92
2673 1.56 × 10−4 2.08 5.03 × 10−4 2.07 4.71 × 10−3 2.07

The dead–body simulation is first performed with periodic BCs, initial null ve-
locity and uniform pressure on the geometry of the 2–vessel junction case. Succes-
sively, different configurations, including junctions with multiple branches in which
the joined vessels exhibit mechanical and geometrical characteristics different from
each other, are considered. Results confirm that neither spurious velocities nor dif-
ferent numerical perturbations arise during the simulation. Therefore, the model
is verified to be well–balanced (or, with the same connotation, satisfies the exact
conservation property, i.e., C–property (Bermudez and Vazquez, 1994) even when
involving junctions.
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TABLE 4.4: Results of the accuracy analysis performed for the 2–
vessel junction test, concerning a generic artery (AA) and a generic
vein (VV). Vessels wall are characterised by a viscoelastic mechanical
behaviour. Errors are computed for variables A, Au and p in terms of
norms L1, L2 and L∞, showing the corresponding order of accuracy.
The final time of the simulation is tend = 0.025 s for the AA test, and

tend = 0.10 s for the VV test.

Test Variable nc L1 O(L1) L2 O(L2) L∞ O(L∞)

AA

A

33 3.47 × 10−8 - 6.03 × 10−8 - 1.36 × 10−7 -
99 3.75 × 10−9 2.02 6.58 × 10−9 2.02 1.48 × 10−8 2.02
297 4.13 × 10−10 2.01 7.25 × 10−10 2.01 1.64 × 10−9 2.00
891 4.52 × 10−11 2.01 7.95 × 10−11 2.01 1.80 × 10−10 2.01
2673 4.52 × 10−12 2.10 7.94 × 10−12 2.10 1.80 × 10−11 2.10

Au

33 1.70 × 10−7 - 2.98 × 10−7 - 7.51 × 10−7 -
99 2.38 × 10−8 1.79 4.29 × 10−8 1.77 1.16 × 10−7 1.70
297 2.82 × 10−9 1.95 5.10 × 10−9 1.94 1.40 × 10−8 1.92
891 3.16 × 10−10 2.00 5.74 × 10−10 2.00 1.58 × 10−9 2.00
2673 3.18 × 10−11 2.10 5.78 × 10−11 2.10 1.60 × 10−10 2.10

p

33 8.21 - 1.43 × 101 - 3.42 × 101 -
99 9.14 × 10−1 2.00 1.60 2.00 3.75 2.01
297 1.00 × 10−1 2.01 1.76 × 10−1 2.01 4.12 × 10−1 2.01
891 1.10 × 10−2 2.01 1.93 × 10−2 2.01 4.52 × 10−2 2.01
2673 1.10 × 10−3 2.10 1.93 × 10−3 2.10 4.51 × 10−3 2.10

VV

A

33 2.91 × 10−8 - 9.49 × 10−8 - 7.55 × 10−7 -
99 3.26 × 10−9 2.00 1.11 × 10−8 1.96 1.15 × 10−7 1.71
297 3.57 × 10−10 2.01 1.21 × 10−9 2.01 1.38 × 10−8 1.93
891 3.88 × 10−11 2.02 1.34 × 10−10 2.01 1.54 × 10−9 2.00
2673 3.87 × 10−12 2.10 1.34 × 10−11 2.10 1.55 × 10−10 2.09

Au

33 1.61 × 10−8 - 7.34 × 10−8 - 6.33 × 10−7 -
99 2.15 × 10−9 1.83 9.46 × 10−9 1.86 1.02 × 10−7 1.59
297 2.59 × 10−10 1.93 1.15 × 10−9 1.91 1.35 × 10−8 1.91
891 2.94 × 10−11 1.99 1.32 × 10−10 1.97 1.58 × 10−9 1.95
2673 2.97 × 10−12 2.10 1.34 × 10−11 2.10 1.61 × 10−10 2.08

p

33 6.55 × 10−1 - 2.12 - 1.69 × 101 -
99 8.89 × 10−2 1.82 3.25 × 10−1 1.71 3.54 1.42
297 1.19 × 10−2 1.83 4.77 × 10−2 1.75 5.20 × 10−1 1.75
891 1.33 × 10−3 2.00 5.44 × 10−3 1.98 6.15 × 10−2 1.94
2673 1.37 × 10−4 2.07 5.69 × 10−4 2.05 6.48 × 10−3 2.05

4.3.2 3–vessel junction

A 3–vessel junction test is performed accounting for a bifurcation case (3 arter-
ies) in both the elastic and viscoelastic configuration. The model has been tested also
for a venous confluence, but due to the lack of reference solutions to compare with,
results are not reported in this Thesis. The 3–vessel junction test represents the bi-
furcation of the terminal part of the abdominal aorta (AbA) into the two iliac arteries
(IAs) that perfuse the legs. Benchmark solutions, as well as geometrical and elastic
mechanical parameters, are taken from Boileau et al. (2015) and Xiao, Alastruey, and
Figueroa (2014), to which the reader is referred. In fact, the bifurcation test proposed
in Boileau et al. (2015) and Xiao, Alastruey, and Figueroa (2014) only considers an
elastic vessels wall behaviour. At the inlet, a flow rate resembling the human flow
rate waveform at this section of the AbA is prescribed as supplied by Murgo et al.
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4.3.3 Human arterial networks

In this section, results obtained simulating two different networks of the largest
central systemic arteries of the human vascular system are presented and discussed.
The first network simulates an in vitro model composed of 37 main arteries, labeled
as AN37 hereinafter, for which experimental measurements of flow rate and pres-
sure are available (Alastruey et al., 2011; Matthys et al., 2007). The second network
is a reduced version of the anatomically detailed arterial system, composed of the 56
largest arteries of the human arterial circulation, hence labeled as ADAN56 (Blanco
et al., 2014; Blanco et al., 2015). For both networks, the simulated waveforms of the
system variables are compared, for selected arteries, to reference solutions (experi-
mental and numerical elastic benchmark) taken from Boileau et al. (2015). Moreover,
a viscoelastic simulation is carried out for the same two networks to assess how the
SLSM application affects the results. All SLSM viscoelastic parameters, estimated
following Bertaglia et al. (2020), are reported in Appendix A for both networks.

AN37

The AN37 arterial tree recalls the one presented in Matthys et al. (2007) and Alas-
truey et al. (2011), for which in vitro pressure and flow rate measurements were ac-
quired at multiple locations. The network is composed by 37 silicon vessels repre-
senting the largest central systemic arteries of the human vascular system. At the
inlet of the ascending aorta, the condition qin(t) is imposed, which corresponds to
the measured in vitro flow rate, based on a human cardiac output. Downstream BC
is simulated coupling to each 1-D peripheral vessels a single–resistance (R) lumped-
parameter model. All these R boundary parameters and the inlet flow rate are sup-
plied by Boileau et al. (2015). The network is simulated through the a-FSI blood flow
model solved with the AP-IMEX RK FV scheme, with initial conditions such that
AIC = A0, pIC = pext = 0 and uIC = 0. The reader is referred to Alastruey et al.
(2011), Boileau et al. (2015), and Matthys et al. (2007) for the topological, geometri-
cal and mechanical parameters of the AN37 network. To simulate the viscoelastic
case, for consistency with the corresponding elastic case, E∞ is set equal to the elas-
tic Young modulus given in the references, η is gathered for every silicon tube from
Alastruey et al. (2011) (from which experimental results are also taken for compari-
son), and finally E0 is computed with Eq. (3.2.20). The velocity profile is character-
ized by a coefficient αc = 1.1, hence ζ = 9. The spatial discretization is performed
setting the cell width ∆x = 5 mm, imposing that at least two cells are used to dis-
cretize the shortest vessels.

Comparisons between numerical results, elastic benchmark and experimental
data, in terms of pressure and flow rate, are presented in Figures 4.7–4.10 for selected
vessels, as well as numerical results in terms of dimensionless cross–sectional area,
for which a reference solution is not available in literature. The simulation is run for
15 heartbeats in order to converge to a periodic state, but only the last cardiac cycle is
shown. It can be observed that IMEX numerical results are in very good agreement
with elastic benchmarks, which consist in six 1-D numerical results obtained with
different methods (Boileau et al., 2015). Moreover, IMEX results correctly captures
the main features of flow rate and pressure experimental data at the 8 investigated
arterial sites, suggesting that the proposed methodology permits to replicate the be-
haviour of an in vitro arterial tree, considering the uncertainties in the experimental
measurements and the simplifications of the 1-D formulation, which cause the ob-
servable discrepancies.
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FIGURE 4.18: Hysteresis loop obtained for various arteries in the
ADAN56 network. The elastic lines confirms the absence of dissipa-
tive effects, in contrast with the wide viscoelastic curves that shows
energy dissipation. In the latter, the curve evolves counterclockwise,
showing the characteristic feature connected to the dicrotic notch. A0
and p0 are the equilibrium cross–sectional area and pressure, respec-

tively, whose value coincides with that of the diastolic phase.
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Chapter 5

The effect of cardiac properties on
arterial pulse waves

5.1 Introduction

This study investigates the effects of cardiac properties variability on arterial
pulse wave morphology using blood flow modelling and pulse wave analysis, the
background of which is given in Chapter 2. The complete cardiovascular model pre-
sented in Chapter 4, inclusive of the lumped–parameter model of the left part of the
heart coupled to the one–dimensional model of the arterial network (Figure 4.1), is
used to carry out the analysis presented in this Chapter.

Section 5.2 presents a computation proof–of–concept to identify the effect of car-
diac properties on arterial pulse waves. At first, the cardiovascular model is vali-
dated using reference pulse waveforms in turn verified by comparison with in vivo
measurements. This validation is specifically designed to verify the performance of
the model in returning physiological pulse waves for assigned cardiac properties.
Then, a sensitivity analysis is performed to assess the effects of variations in car-
diac parameters on central and peripheral pulse waveforms. Results showed that
left ventricular contractility, stroke volume, cardiac cycle duration, and heart valves
impairment are determinants of central waveforms morphology, pulse pressure and
its amplification. Contractility of the left atrium has negligible effects on arterial
pulse waves. Results also suggested that it may be possible to infer left ventricular
dysfunction by analysing the timing of the dicrotic notch and cardiac function by
analysing PPG signals. This study aims at identifying cardiac properties that may
be extracted from in vivo central and peripheral pulse waves to assess cardiac func-
tion.

Section 5.3 is conceived as the natural prosecution of the analysis in Section 5.2,
with direct application to hypertension. In particular, this Chapter addresses the
study of isolate systolic hypertension and its haemodynamic fundaments. Periph-
eral wave reflections and arterial stiffening have been considered the major deter-
minants of raised pulse pressure and isolate systolic hypertension, but recently the
importance of ventricular ejection dynamics is also recognised. The analysis is con-
ducted by examining the contributions of aortic compliance and ventricular contrac-
tility to variations in aortic flow and increased central and peripheral pulse pressure,
and pulse pressure amplification (PPa) in normotensive subjects during pharmaco-
logical modulation of physiology, in hypertensive subjects, and in silico using the
cardiovascular model accounting for ventricular–aortic coupling. Moreover, reflec-
tions at the aortic root and from downstream vessels are quantified using emission
and reflection coefficients, respectively. Results showed that cPP is strongly associ-
ated with contractility and compliance, whereas pPP and PPa are strongly associated
with contractility only. Increased contractility by inotropic stimulation raises peak
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aortic flow (323.9 ± 52.8 vs 389.1 ± 65.1 ml/s), and the rates of increase (3193.6 ±
793.0 vs 4848.3 ± 450.4 ml/s2) and decrease (1433.6 ± 235.8 vs 2020.0 ± 404.8 ml/s2)
in aortic flow, leading to larger cPP (36.1 ± 8.8 vs 59.0 ± 10.8 mmHg), pPP (56.9 ±
13.1 vs 93.0 ± 17.0 mmHg) and PPa (20.8 ± 4.8 vs 34.0 ± 7.3 mmHg). Increased com-
pliance by vasodilation decreases cPP (62.2 ± 20.2 vs 45.2 ± 17.8 mmHg) without
altering pPP or PPa. The emission coefficient changes with increasing cPP, but the
reflection coefficient do not. These results agrees with in silico data obtained by in-
dependently changing contractility/compliance over the in vivo pathophysiological
ranges. This study highlights the key role that ventricular ejection dynamics plays in
raising and amplifying PP, by altering aortic flow wave morphology. The diagnosis
and treatment of hypertension may therefore improve by targeting systolic ejection
patterns.

5.2 Cardiac function assessment using the pulse wave analy-
sis

Pathologies affecting cardiac function are responsible for morbidity and mor-
tality worldwide (Gaddum et al., 2017). Cardiac haemodynamics properties are of
paramount importance for the assessment of cardiac function and, hence, cardio-
vascular risk. Some cardiac properties are assessed invasively. For example, left
ventricular filling pressure – which is used to assess left ventricular function – can
be measured directly by placing a catheter in the proximal aorta or the left ventricle,
or indirectly from the pulmonary artery (Sharma et al., 2002; Reddy and Nishimura,
2021). This is an expensive and time–consuming procedure that carries risk to pa-
tients (e.g., blood clot formation and embolization) due to its invasive nature, even
when performed in specialized centres (McEniery et al., 2014).

An indirect estimation of cardiac properties by pulse wave analysis may over-
come these obstacles. Currently, pulse wave analysis is usually employed to obtain
information on vascular properties, such as arterial stiffness (Mynard et al., 2020),
but it has the potential to provide information on cardiac function, since changes
in cardiac properties affect the morphology of pulse wave signals measured in the
vasculature (Huttunen et al., 2020). Nowadays, pulse waves can be acquired non-
invasively by wearable devices which are more convenient and less expensive for
large–scale screening than invasive exams. In particular, the PPG pulse wave is eas-
ily acquired using pulse oximeters, which are frequently used in healthcare settings
to measure arterial blood oxygen saturation and pulse rate. PPG signals can also be
acquired by devices available to the wider population, such as smartwatches and
fitness bands (Wang et al., 2021; Elgendi, 2020).

Databases of in silico pulse waves signals representative of cohorts of real sub-
jects can be produced using robust and efficient computational blood flow models
for the development and pre–clinical testing of pulse wave analysis algorithms (Am-
brosi, Quarteroni, and Rozza, 2012; Willemet, Vennin, and Alastruey, 2016). Virtual
subjects are characterised by haemodynamic variables spanning the physiological
range, even in disease–related conditions (Jin and Alastruey, 2021; Reymond et al.,
2009). Different numerical models can be employed to accomplish this task: 0-D
lumped–parameters models for simulating blood flow in distal vessels (Arts et al.,
2005; Le Gall et al., 2020; Charlton et al., 2019) and specific organs such as the heart
(Mynard, 2011), 1-D models for simulating blood flow in the large arteries of the
human circulation (Müller et al., 2016; Piccioli et al., 2022a), and three–dimensional
(3-D) models (Jin and Alastruey, 2021), whose use is limited to the simulation of
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blood flow in localised regions of the vasculature due to their high computational
cost. 1-D models can simulate pulse wave signals with a reasonable accuracy com-
pared with both 3-D models (Xiao, Alastruey, and Figueroa, 2014; Jin and Alastruey,
2021) and experimental data (Matthys et al., 2007), and at much lower computational
cost compared to 3-D models. They have, therefore, been used to generate databases
of pulse waves for thousands of virtual subjects.

The aim of this study is to investigate the effect of cardiac properties on pulse
wave morphology using the 1-D model of the arterial vasculature (Piccioli et al.,
2022a) coupled to the 0-D model of cardiac contraction, as outlined in Chapter 4.
Previous studies have simulated the ventricular–arterial coupling in 1-D modelling,
such as the pioneering work of Formaggia et al. (2006), and, more recently, Liang
et al. (2009), however they aimed to infer the effect of arterial changes caused by
ageing on cardiac dynamics. The ability of the cardiovascular model to describe
physiological pulse waves for assigned cardiac properties is verified using reference
pulse waveforms (Mynard and Smolich, 2015; Charlton et al., 2019). A sensitivity
analysis (SA) is then performed to study the effect of all cardiac model parameters
on central and peripheral pulse waveforms, including the PPG signal in the digital
artery, so that the perspective of the problem analysed in Formaggia et al. (2006) and
Liang et al. (2009) is reversed.

5.2.1 Methods

Cardiovascular model

The 1-D model vascular network is modelled using the a-FSI system (Bertaglia,
Caleffi, and Valiani, 2020; Bertaglia et al., 2020; Bertaglia et al., 2021). Details on the
mathematical model of the cardiovascular network and the numerical scheme for
space and time integration are exhaustively introduced in chapters 3 and 4. For
the analysis conducted in this Chapter, key assumptions for the haemodynamic
model are: laminar flow, incompressible and Newtonian fluid (blood density, ρ =
1060 kg/m3; blood viscosity, µ = 2.5 mPa s), and no energy losses at bifurcations.
For the geometrical and mechanical characteristics of the network the reader is re-
ferred to Charlton et al. (2019).

Significant parameters evaluation

Given the wealth of parameters involved in the cardiovascular model, a sensitiv-
ity analysis is performed to identify those parameters that most affect blood pressure
waveforms, labelled hereafter as significant. This Section presents the cardiovascu-
lar parameters varied in the sensitivity analysis and describes how the significant
parameters are identified, whereas the following section introduces the haemody-
namic indices studied in the sensitivity analysis.

The parameters defining the cardiovascular model are separated into vascular
and cardiac, as indicated in Table 5.1. The former refer to geometrical and me-
chanical parameters of the arterial tree, including the RCR parameters of terminal
branches. Vascular parameters are taken from Charlton et al. (2019). The cardiac pa-
rameters are those of the cardiac contraction model. Vnet and T are also taken from
Charlton et al. (2019). The parameters defining chamber elastance and valve dynam-
ics are set in accordance with Mynard and Smolich (2015). Their reference values are
listed in Appendix C.1.
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TABLE 5.1: Vascular (VV) and cardiac (CC) parameters of the numer-
ical model. VV parameters: vessel length (L), proximal and distal
vessel radius (rin and rout, resp.), vessel stiffness (Eh, where E is the
Young’s modulus and h is vessel thickness) computed via Eq. (2) in
(Charlton et al., 2019), reference pressure (pre f ), RCR outlet pressure
(pout), and RCR resistances and compliance (R1, R2, C, resp.). CC
parameters: total volume entering the LA in one cardiac cycle (Vnet),
cardiac cycle duration (T), minimal and maximal elastance (Emin and
Emax, resp.), shape and time parameters (m1,2 and τ1,2, resp.), source
resistance (Ks), unstressed and initial volumes (vp0 and v0, resp.) and
onset time of the elastance function (tonset); minimum and maximum
valve orifice areas (Amin and Amax, resp.), valve opening and closure
constants (Kvo and Kvc, resp.), and valve length (l). Subscripts c and v

refer to chamber and valve, respectively.

VV
L [m] rin, rout [m] Eh [Pa m] pre f [Pa] pext [Pa]

pout [Pa] R1 [Pa s/m3] R2 [Pa s/m3] C [m3/Pa]

CC

Vnet [m3] Emin,c [Pa/m3] m1,c [-], τ1,c [s] vp0,c [m3] Ks,c [s/m3]
T [s] Emax,c [Pa/m3] m2,c [-], τ2,c [s] v0,c [m3] tonset,c [s]

Amin,v [m2] Kvo,v [1/Pa s] lv [m]
Amax,v [m2] Kvc,v [1/Pa s]

The sensitivity analysis focuses on the cardiac parameters, since a sensitivity analy-
sis for the vascular parameters has been performed by Charlton et al. (2019).

Sensitivity analysis is performed by varying the cardiac parameters listed in Ta-
ble 5.1 from their reference values in a univariate manner, i.e., when a parameter is
varied, all others remain unchanged. Reference values of heart chamber and valve
parameters are listed in Tables C.1 and C.2, respectively. Variations are performed by
increasing and decreasing each reference value by a percentage change that depends
on the cardiac parameter considered:

– Cardiac parameters, excluding Vnet, T, and minimum and maximum valves
areas, are varied by ±50% from the reference value. Given the lack of base-
line physiological variations of these modelling parameters in the literature,
a ±50% is chosen to investigate the effect of these parameters on pulse wave
morphology. The resulting variations in left ventricular contractility are gen-
erally within the physiological range for different clinical scenarios (Mynard
and Nithiarasu, 2008), as shown in Section 5.2.2.

– The minimum orifice area of the aortic and mitral valves have a zero reference
value, standing for a complete valve closure. Simulations for increased Amin,AV
and Amin,MV are obtained by setting their values to 30 mm2, corresponding to
a severe aortic regurgitant orifice area (Steeds and Myerson, 2020), and to a se-
vere mitral regurgitation (Carabello, 2001). Decreased values have no physical
meaning and were not considered. The maximum orifice areas of the aortic
and mitral valves, Amax,AV and Amax,MV respectively, are decreased to simulate
severe stenosis scenarios by setting their values to 1 cm2 (Baumgartner et al.,
2009). Increased values are obtained increasing their reference value by 50%.

– The total volume entering the network in one cardiac cycle, Vnet, and cardiac
cycle duration, T, are varied as described by Charlton et al. (2019). Maxi-
mum and minimum values for both parameters are identified in Charlton’s
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database. The positive and negative percentage variations from their refer-
ence value have been calculated, and the greatest variation in absolute value
has been used in the SA. As a result, Vnet varies by ±40%, and T by ±20%.
The same percentage changes are used for positive and negative variations to
avoid SA asymmetry.

Sensitivity analysis simulations are compared in pairs to assess the effect on arterial
pressure waveforms of changes in cardiac parameters: (i) baseline simulation and
(ii) increased or decreased parameter, respectively. This comparison is made for each
parameter at the aortic root, brachial artery, and digital artery. The root mean square
deviation (RMSD) is calculated for each pair. RMSDs are found to increase towards
the periphery, therefore, the cardiac parameters giving an RMSD in the digital artery
above the assigned threshold of 6.5 mmHg are labelled as significant.

Haemodynamic indices

Eleven haemodynamic indices are used in a second sensitivity analysis involving
those cardiac parameters identified as significant in Section 5.2.1.

The following four indices of central haemodynamics are considered. Left ventri-
cular contractility, quantified by the contractility index (CI), is the maximum rate of
increase in left ventricular pressure during isovolumetric contraction, dpLV/dt|max
(Mynard and Nithiarasu, 2008; Chengode, 2016). The rate of increase in flow rate
and pressure at the aortic root in early systole, ∆q/∆t and ∆p/∆t, respectively. ∆q
is calculated as the difference between the peak flow rate, qmax, and the flow rate
at the foot of the waveform, qmin, i.e., when the aortic valve opens. ∆p is the pulse
pressure (Li et al., 2021). ∆t is the time interval in–between the occurrences of either
qmin and qmax or DBP and SBP. Finally, the maximum rate of decrease of late-systolic
flow at the aortic root, dq/dt|min,AoRt, as described in Flores Gerónimo et al. (Flores
Gerónimo et al., 2021).

The following four indices of cardiac function are considered: left ventricular
ejection time (LVET), stroke volume, left ventricular ejection fraction (EF), and car-
diac output. LVET is the time interval between opening and closing of the aortic
valve. SV is the difference between simulated left ventricular end–diastolic vol-
ume and end–systolic volume. EF is the ratio of SV to EDV. Lastly, CO is equal
to SV × 60/T.

The following three vascular indices are considered: PP at a central (aortic root)
and peripheral (digital) site, PPAoRt and PPDi respectively, and the PP augmentation
ratio (ARAoRt−Di) calculated as the percentage increase in PP between the two sites.

5.2.2 Results

Cardiovascular model verification

The vascular network model has been thoroughly tested in previous studies
(Bertaglia, Caleffi, and Valiani, 2020; Bertaglia et al., 2020; Piccioli et al., 2022a) and
in Chapter 4 of this Thesis. This Section focuses on verifying the ability of the cardiac
contractility model coupled to the vascular network model to produce physiologi-
cal haemodynamics signals. Figure 5.1 compares simulated haemodynamics signals
with reference in silico data, taken from Mynard and Smolich (2015) and Charlton
et al. (2019) in the heart and vasculature, respectively. These reference data are vali-
dated against in vivo measurements. Since the reference cardiac and vascular models
have different cardiac outputs, the cardiac output of the reference vascular model is
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aortic root vary similarly to variations in CI, although at different rates (Figure 5.4
B and C). The variations in ∆q/∆t and ∆p/∆t observed with stenotic aortic valve
confirm the variations in flow rate and BP waveforms observed in Figure 5.3. The
relation between increased left ventricular contractility and aortic root pulse wave
morphology produced by our model is consistent with Li et al. (2021). The varia-
tions in ∆q/∆t and ∆p/∆t follow the same trend as those in PPDi (Figure 5.4 J), in
agreement with the morphology of the central pressure wave being a major deter-
minant of peripheral SBP and correlating with the rate of increase in early–systolic
aortic flow (Li et al., 2021; Flores Gerónimo et al., 2021). Moreover, the maximum
rate of decrease in late–systolic flow at the aortic root, dq/dt|min,AoRt in Figure 5.4 D,
increases with increasing Vnet, and decreasing T and LVET, in agreement with Flores
Gerónimo et al. (2021).
As for LV properties, both EF and LVET are affected by changes in left ventricular
contractility, as shown in Figure 5.4 E and F. EF also increases with regurgitant valves
and increasing Vnet and T. The variation in LVET becomes significant when τ2,LV is
varied: it decreases by −48 % with decreasing τ2,LV and increases by +52 % with in-
creasing τ2,LV . This result is consistent with the physical meaning of the contraction
and relaxation time parameters. These influence the time of occurrence of the respec-
tive sections of the elastance curve: a decrease in τ1,LV anticipates contraction and an
increase in τ2,LV delays relaxation, and vice–versa. In the case of AV regurgitation,
LVET is the time interval when the area of the AV is greater than its minimum value.
SV is not affected by the four cardiac parameters related to left ventricular contrac-
tility (Figure 5.4 G), since Vnet does not change. A significant increase in SV can be
observed with simulated valve regurgitant scenarios, of +92 % and +72 % for the
AV and MV, respectively. When the AV does not close completely, part of the vol-
ume ejected during the contraction returns into the ventricle during relaxation, as
pointed out in Section 5.2.2. This causes both the LV end–diastolic and end–systolic
volumes to increase, with a greater increase in the former than the latter, thus re-
sulting in an overall increase in SV. Similarly, the LV ejects blood volume through
both valves when the MV is impaired. Thus, the LV end–systolic volume decreases
and the end–diastolic volume increases. The stenotic aortic valve scenario does not
affect significantly LV end–diastolic and end–systolic volumes, hence, SV does not
vary. The aortic stenosis causes a slower ejection of the blood volume. Variations in
Vnet cause SV to change symmetrically from the baseline value, demonstrating that,
barring leaking valve scenarios, Vnet is a surrogate of stroke volume. As expected,
CO in Figure 5.4 H changes consistently with SV and T, most significantly influ-
enced by the former.
The pulse pressure shows less variation in central sites compared to the periphery
(Figure 5.4 I and J). PP increases with increasing left ventricular contractility, i.e.,
higher peak and rate of increase in elastance. Both central and peripheral PP in-
crease with shortened LVET, observable from variations in τ2,LV . Regurgitant valves
and increased Vnet and T also raise PP, which instead decreases with severe aortic
stenosis. Greater contractility augments ARAoRt−Di (Figure 5.4 K), hence enhancing
the physiological effect of PP amplification towards peripheral sites (Charlton et al.,
2019; Li et al., 2021). ARAoRt−Di decreases with regurgitant AV, caused by the greater
increase in PPAoRt compared to PPDi from their baseline values.

5.2.3 Discussion

The analysis presented in Section 5.2 has studied the relationship between car-
diac properties and vascular haemodynamics using a state–of–the–art 0-D model
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properly coupled to a vascular 1-D model by treating the 0-D model with the IMEX-
RK SSP scheme for the time discretisation, consistently with the 1-D model. It has
been demonstrated that the presented cardiovascular model correctly reproduces
human haemodynamics, consistent with in vivo measurements. The sensitivity anal-
ysis has shown that variations in cardiac properties are associated with identifiable
variations in waveform morphology, suggesting the possibility of applying tech-
niques for inverse problem solving, going from a specific pressure waveform to the
changes in cardiac characteristics that generated it. Moreover, LA contractility has
negligible effects on vascular pulse waves, suggesting that LA properties can not
be derived from a pulse wave analysis. At baseline values, Emax,LA is equal to 0.13
mmHg/ml, whereas Emax,LV is equal to 2.8 mmHg/ml, producing peak LA and LV
pressures of 8 mmHg and 103 mmHg, respectively. Thus, even the variations in LA
contractility parameters fail to produce significant changes in LA pressure sufficient
to affect vascular haemodynamics. In contrast, left ventricular contractility, stroke
volume, cardiac cycle duration, and impaired valves function have a considerable
influence on arterial pulse waves, being determinants of central waveforms mor-
phology, pulse pressure and its amplification. The greatest variations in PP were
found at peripheral sites rather than central sites, which may be more valuable sites
for extracting information about cardiac function by pulse wave analysis. Further-
more, our results have corroborated the findings of previous studies showing strong
correlations between left ventricular contractility, aortic blood flow and PP (Flores
Gerónimo et al., 2021; Li et al., 2021; Pagoulatou et al., 2021), and the crucial role of
cardiac function in both central and peripheral pressure amplitudes (Gaddum et al.,
2017; Vennin et al., 2017).
Our results have shown that left ventricular contractility, measured by CI, is related
to peak elastance, Emax,LV , rate of LV contraction, and LVET. An increase in Emax,LV al-
lows the LV pressure to reach higher values, as Emax,LV and LV pressure are directly
related through the strain–stress relationship of the cardiac chamber. CI increases
with a faster contraction simulated by decreased m1,LV , and time parameters. As
τ1,LV decreases, LV pressure increases more rapidly, and so does pressure and flow
rate at the aortic root. Moreover, the decrease in τ2,LV results in a shortening of LVET,
leading to the same SV being ejected in a shorter time inteval, making the ejection
more impulsive. The increase in contractility correlates with the increase in the PP
augmentation ratio, i.e., PP increases more in the periphery than centrally (Figure
5.4 A and K). Furthermore, increased CI is associated with greater SBP peaks in the
waveforms (see Figure 5.3). This phenomenon is generally more pronounced to-
wards the periphery, and is evident in the case of decreased τ2,LV . The total blood
volume entering the network in one cardiac cycle, Vnet, and cardiac cycle duration,
T, both affect blood pressure in the vascular network. With increasing Vnet and T,
PP increases at both the central and peripheral sites, but the PP augmentation ra-
tio decreases from the baseline simulation. Results have shown that valve impair-
ment affects pulse waves, particularly in the case of a regurgitant and stenotic AV
due to its direct coupling with the vascular network. With aortic regurgitation, cen-
tral PP increases more than peripheral PP due to the increased SV. Central arteries
have greater compliance than peripheral ones, hence they undergo a greater cross–
sectional area dilation and, so, greater increase in PP. With aortic stenosis there is no
variation in SV, and PP changes more significantly in the peripheral site. Further re-
search is needed to investigate the correlation between valve disease and peripheral
pressure in a large cohort of in vivo subjects with valve dysfunction via noninvasive
measurements of peripheral BP.
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Some aspects of our cardiovascular model should be underlined. Firstly, some car-
diac parameters that characterise the left ventricular contractility and describe the
elastance function cannot be measured directly. Therefore, it is cumbersome to de-
fine a physiological range of values for these parameters. Secondly, cardiac parame-
ters affect vascular haemodynamics independently of each other, enabling the study
of the effect on pulse wave morphology of independent changes in cardiac prop-
erties. This is not the case in vivo, where it would be challenging to change left
ventricular contractility, for example through pharmacological intervention, with-
out affecting the properties of the vasculature, and vice–versa. Finally, an open–
loop model has been used and, thus, some parameters must be imposed, e.g. Vnet,
de facto imposing the venous return. This is numerically implemented through the
parametrisation of the pulmonary venous flow rate entering the LA. Physiologi-
cally, an impaired LV function can affect the venous return, but this cause–effect
phenomenon cannot be regarded in an open–loop cardiovascular model. To over-
come this limitation, a decreased venous return is included in the sensitivity anal-
ysis through a variation in Vnet. Therefore, the open–loop model does not weaken
the results presented. The implementation of a closed–loop will be object of future
work.
This work suggests that it may be possible to infer LV dysfunction, such as an im-
paired relaxation phase, by analysing the timing of the dicrotic notch. Results show
that the time of diastole of the pulse waveform only varies with the relaxation time
parameter of the LV elastance function, but is not affected by other cardiac parame-
ters. This study also offers valuable insight into in the field of hypertension. Lately,
the importance of left ventricular contractility in hypertension has been studied,
showing that LV function is a major determinant of blood pressure elevation (Gad-
dum et al., 2017; Vennin et al., 2017; Li et al., 2017; Flores Gerónimo et al., 2021; Li et
al., 2021). Our results support this thesis, as PP increased with increasing left ventri-
cular contractility without changes in vascular properties. Moreover, hypertension
has been found to be related to left ventricular hypertrophy, a response to chronic
pressure overload (Segers et al., 2000), and heart valves disease (Pai and Varadara-
jan, 2010; Bonow, 2013; Mrsic et al., 2018). Assessing cardiac properties by arterial
pulse wave analysis may allow cardiac function characterisation without the need
for invasive catheterization. Results have shown that alterations in blood pressure
waves amplify towards the periphery of the systemic circulation (see the RMSDs
trends and variations in PPDi and ARAoRt−Di when significant cardiac parameters
were varied). Therefore, easily accessible measurements in peripheral arteries could
be employed, such as in the radial artery, or one of its surrogates, the digital artery
(Millasseau et al., 2000a).
Finally, results have highlighted the importance of studying PPG signals, as already
presented in previous works in which machine learning models were employed
to determine haemodynamic properties using pulse waves and PPG data (Elgendi,
2020; Wang et al., 2021). Such models could also be applied to infer cardiac prop-
erties from peripheral pressure measurements and PPG signals. Coherently with
Charlton et al. (2022), this work suggests that LVET can be detected from PPG sig-
nals analysis. The morphology and shape–ratios of these signals are affected by
diseased aortic valves. Given the popularity of wearable devices, such as FitBits,
smartwatches and oxymetries that are able to measure PPG signals, understanding
their correlation with cardiac function could provide consumers with personal tools
for monitoring cardiac function.
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5.3 Ventricular ejection and pulse pressure

Hypertension, a leading cause of morbidity and mortality in the adult popula-
tion (Lim et al., 2012), arises in large part from an increase in pulse pressure (Franklin
et al., 1997) and is a major risk factor for incident cardiovascular events particularly
in older individuals (Franklin et al., 1997). However, the haemodynamic basis of
this increase is still debated. Historically, peripheral wave reflections and arterial
stiffening have been considered the major determinants of the increase in PP and its
amplification from the aorta to the periphery (where it is normally measured) (Sa-
far, Levy, and Struijker-Boudier, 2003; O’Rourke and Nichols, 2005; O’Rourke and
Hashimoto, 2007; Hashimoto and Ito, 2010). However, studies from Framingham
data have shown that peripheral wave reflections provide a relatively small contri-
bution to age–related changes in central PP and augmentation pressure (Mitchell
et al., 2010; Torjesen et al., 2014). By contrast, recent studies have empathized the
potential importance of ventricular ejection dynamics, in combination with arterial
stiffening, in determining the central and peripheral blood pressure wave in the first
half of systole and in elevating BP with hypertension (Chirinos et al., 2009; Sharman
et al., 2009; Schultz et al., 2013; Fok et al., 2014a; Torjesen et al., 2014). In particu-
lar, left ventricular contractility, measured as the rate of increase in central BP dur-
ing early systole (Quinones, Gaasch, and Alexander, 1976), has been identified as
a major determinant of aortic flow wave morphology, which in turn is a main de-
terminant of PP (Vennin et al., 2017; Vennin et al., 2021) and PPa (Fok et al., 2014a;
Gaddum et al., 2017; Flores Gerónimo et al., 2021). Recently, Pagoulatou et al. (2021)
have highlighted a strong relationship between an increase in cardiac contractility
alone and changes in central and peripheral pulse phenotypes, manifesting with
an increase in the forward pressure wave. Quantification of the relative role of left
ventricular contractility and arterial stiffening in increasing central PP and ampli-
fying it to the periphery, as well as understanding the underlying haemodynamic
mechanisms, could accelerate developments in clinical diagnosis and treatment of
hypertension.
The purpose of the present study is to examine the contributions of left ventricular
contractility and arterial stiffness to variations in aortic flow wave morphology and
increased PP and PPa, and describe the underlying haemodynamic mechanisms.
Both in vivo and in silico data are used. In vivo data are obtained in normotensive and
hypertensive subjects; in the former, normal physiology was perturbed using va-
soactive drugs with divergent effects on the heart and arteries. In silico data are sim-
ulated using a state–of–the–art model of cardiac dynamics coupled to a distributed
model of arterial blood flow that enabled simulation of independent increases in ei-
ther ventricular contractility or arterial stiffness that cannot be achieved in vivo. The
effects on cPP, pPP, and PPa, and aortic flow of varying left ventricular contractil-
ity or arterial stiffness are examined, and the role played by aortic and peripheral
wave reflections in raising cPP is studied. Results shows that ventricular ejection
dynamics plays a key role in raising and amplifying PP with hypertension.

5.3.1 Methods

Previously acquired in vivo data, both invasive and noninvasive, are used to ex-
amine relationships between pressure and aortic flow (Munir et al., 2008; Fok et
al., 2014a; Li et al., 2017). All studies described below involving in vivo data were
approved by the Local Research Ethics Committee, and all patients gave written
informed consent.
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In vivo data: Invasive cohort

Invasive in vivo data includes measurements of central aortic pressure and pe-
ripheral (digital artery) pressure previously acquired during diagnostic angiography
in 23 patients (age 62 ± 10 years, BP 129 ± 24/67±9 mmHg, means±SD; see Table
D.1 in Appendix D at the end of this Thesis) (Munir et al., 2008). Patients with acute
coronary syndromes, those with significant valvular disease and rhythm other than
sinus rhythm, were excluded from the study. Central aortic pressure was measured
using a Millar high–fidelity pressure tipped catheter (Millar Instruments, Houston,
TX; sampling rate was flat to greater than 100 Hz) positioned in the proximal aortic
root. Peripheral pressure waveforms were acquired simultaneously from the digital
artery using a servo–controlled finger pressure cuff (Finometer; Finapres Medical
Systems, The Netherlands; sampling rate: 128 samples per second). It has been
previously shown that digital artery waveforms obtained in this way are virtually
identical to radial artery waveforms acquired by tonometry using the SphygmoCor
system (Millasseau et al., 2000b). Baseline measurements of central and peripheral
pressure were obtained over at least ten cardiac cycles and ensemble averaged. Sub-
lingual glyceryl trinitrate (GTN, 500 µg), a large vasodilator with some action on
ventricular dynamics, was then administered and further measurements were ac-
quired 2 minutes after GTN when haemodynamic responses were stable.

In vivo data: Noninvasive cohorts

The noninvasive in vivo data includes measurements of aortic flow and central
and peripheral blood pressure in a group of normotensive healthy volunteers (n=10,
age 47 ± 8 years, BP 103 ± 15/65 ± 9 mmHg, means±SD) and hypertensive sub-
jects (n=93, age 46 ± 16 years, BP 134 ± 22/88 ± 14 mmHg, means±SD) (Fok et al.,
2014a). Characteristics of the normotensive and hypertensive cohorts are given in
Table D.1 (Appendix D). In both cohorts, central blood pressure waveforms were
obtained from the carotid artery in which pressure closely approximates aortic pres-
sure (Chen et al., 1996). Peripheral pressure was measured at the radial artery. In the
normotensive cohort, haemodynamic properties were modulated by the adminis-
tration of pharmacological drugs with different inotropic and vasoactive properties:
dobutamine (DB), a positive inotrope with some vasodilator actions (2.5, 5, and 7.5
µg/kg per minute; Hameln Pharmaceuticals, Gloucester, United Kingdom), and no-
radrenaline (NA), a vasoconstrictor with some inotropic actions (12.5, 25, and 50
µg/kg per minute; Aguettant, Bristol, United Kingdom). Each drug was given on a
different occasion separated by at least 7 days, and the order was randomized.
Radial and carotid pressure waveforms were obtained by applanation tonometry
performed by an experienced operator using the SphygmoCor system (AtCor, Aus-
tralia; sampling rate: 128 samples per second). Waveforms were obtained at rest
in all subjects and during each dose of vasoactive drugs in the normotensive sub-
jects. For each measurement, approximately ten cardiac cycles were obtained, and
ensemble averaged. Waveforms that did not meet the in–built quality control crite-
ria in the SphygmoCor system were rejected. Brachial BP was measured in tripli-
cate by a validated oscillometric method (Omron 705CP, Omron Health Care, Japan)
immediately before measurements of tonometry and used to calibrate radial wave-
forms, and thus to obtain a mean arterial pressure through integration of the radial
waveform. Carotid waveforms were calibrated from MAP and diastolic brachial
blood pressures on the assumption of equality between proximal and peripheral
DBP (Pauca et al., 1992). Ultrasound imaging was performed by an experienced op-
erator using a Vivid–7 ultrasound platform (General Electric Healthcare, UK). This
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provided a measurement of the flow velocity above the aortic valve using pulsed
wave Doppler obtained from an apical five–chamber view. Flow velocity was ex-
tracted from the envelope of the spectrum, filtered to reduce speckles in late systole
and early diastole, and averaged over at least three cardiac cycles.

In silico data: Computational haemodynamics model

To obtain in silico data, the cardiovascular model presented in this Thesis, vali-
dated and used for the analysis in Section 5.2, is employed to conduct the analyses
presented in this Section. Thus, the arterial network is composed of the 116 largest
human arteries of the head, thorax, and limbs (including the digital arteries in the
hand) (Charlton et al., 2019; Piccioli et al., 2022b). Each artery of the network is char-
acterized by its length, diameter, wall thickness, arterial wall stiffness, and arterial
wall viscosity (Piccioli et al., 2022b). The cardiac function is included by coupling
the 0-D cardiac contraction model at the aortic root (see Chapter 4). The model
parameters are representative of healthy subjects and can be defined for different
age groups, from 25 to 75 years old (Charlton et al., 2019). For the purpose of this
study, the 45–year–old baseline subject is used to simulate blood flow and pressure
at the aortic root and peripheral blood pressure at the radial artery. This model has
age–specific mean values for all cardiovascular properties taken from the clinical
literature, and approximately matches the mean age of the normotensive and hy-
pertensive cohorts (see Table D.1, Appendix D). Cardiac or vascular parameters are
changed independently to obtain haemodynamic properties spanning the range of
values measured in the in vivo normotensive cohort. To simulate the vasoactive ef-
fect of NA and GTN, and to a lesser extent of DB, arterial compliance is modified by
changing either geometrical or mechanical vascular parameters of the 45–year–old
baseline subject, namely arterial stiffness (i.e., wall thickness and Young’s moduli)
or luminal diameters, spanning the range of age–specific mean values from the 25–
to the 75–year–old baseline subjects (Charlton et al., 2019). To simulate the inotropic
action of DB, and to a lesser extent of NA and GTN, left ventricular contractility
in the baseline subject is increased by changing the parameters of the heart model.
Based on the analysis of the sensitivity of simulated central blood pressure to cardiac
parameters presented in Section 5.2 (Piccioli et al., 2022b), the following parameters
are varied: (i) the stroke volume within the corresponding values measured in vivo
(see Table D.2, Appendix D); and (ii) either the time of the left ventricular relaxation
phase or the maximum amplitude of the contraction phase of the ventricular elas-
tance function, to produce the range of contractility index values measured in vivo
(Table D.2).

Waveform Post–processing

For all in vivo and in silico measurements, cPP, pPP and PPa, obtained as the dif-
ference between the peripheral systolic blood pressure and the first systolic shoulder
in central pressure (Li et al., 2021) with the assumption of equal diastolic blood pres-
sure, are analysed. Arterial stiffness was measured by arterial compliance (inversely
related to stiffness), calculated as the ratio of stroke volume to cPP (Mariscal-Harana
et al., 2021). Left–ventricular contractility is measured by the systolic index of con-
tractility (Chengode, 2016), which is calculated as the maximum rate of increase
in early–systolic central BP with respect to time (dP/dt) (Quinones, Gaasch, and
Alexander, 1976). Traditional wave separations analysis (Parker and Jones, 1990)
is used to obtain forward (p f ) and backward (pb) pressure components of the cen-
tral pulse pressure wave, so that p f + pb = p − pd with p the total blood pressure
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wave and pd the diastolic blood pressure. Peripheral wave reflections are quantified
by the peak reflection coefficient, RCpeak, calculated as the ratio of the peak value
of pb to that of p f . The amount of BP “emitted” at the aortic root towards down-
stream vessels relative to the amount of BP reaching the aortic root from downstream
vessels is calculated using the peak emission coefficient, γpeak, calculated as the ra-
tio of the peak value of p f to that of pb (Vennin et al., 2021). All simulations and
post–processing calculations are performed using customised Matlab software (The
MathWorks, MA).

Statistics

Subject characteristics and results are presented as means ± SD. The effect of ad-
ministering pharmacological drugs on haemodynamic quantities is examined using
paired t–tests. Baseline haemodynamic quantities are compared with those mea-
sured at the maximum drug dose of GTN for the invasive cohort, and DB and NA
for the normotensive cohort, taking p < 0.05 as significant. Correlation analyses are
performed considering Pearson’s (R) and Spearsman’s (rs) correlation coefficients.
Pearson correlation evaluates the linear relationship between two continuous vari-
ables, whereas Spearsman correlation evaluates the monotonic relationship and is
more suitable for sparse data.

5.3.2 Results

Cardiac contractility, arterial compliance and PP

Both cPP and pPP are moderately to strongly associated with dP/dt for all the ex-
perimental data (R = 0.96 for the normotensive cohort, Figures 5.5 A, 5.5 C; R > 0.77
and 0.76 for the hypertensive and invasive cohorts, respectively). In addition, both
pulse pressures are inversely and non–linearly associated with arterial compliance
for the normotensive (Figures 5.5 B and 5.5 D) and hypertensive cohorts, although
these associations are weaker than the corresponding associations with dP/dt (with
Spearsman’s correlation coefficients rs < −0.71 and -0.45, respectively). For all in
vivo cohorts, PPa is moderately to strongly associated with dP/dt (R = 0.87 for the
normotensive cohort, Figure 5.5 E; R = 0.81, and 0.70 for hypertensive and invasive
cohorts, respectively) and shows a moderate to weak inverse correlation with arte-
rial compliance (rs = −0.61 for the normotensive cohort, Figure 5.5 F; rs = −0.30 for
the hypertensive cohort). The correlations are the highest (R > 0.87 and rs < −0.61)
for the measurements in normotensive subjects, in whom haemodynamics are per-
turbed and therefore the range of variation in dP/dt and compliance is the greatest.
The correlations between PP and dP/dt, and PP and compliance are not confounded
by a correlation between dP/dt and compliance (R =-0.16 and -0.31 in normotensive
and hypertensive cohort, respectively). Figures D.1 and D.2 in Appendix D show
the correlation analysis for the hypertensive and invasive cohorts.
Administration of dobutamine significantly increases dP/dt (349.9 ± 101.2 vs 754.0
± 186.3 mmHg/s, p < 0.001) and lead to larger cPP (36.1 ± 8.8 vs 59.0 ± 10.8
mmHg), pPP (56.9 ± 13.1 vs 93.0 ± 17.0 mmHg) and PPa (20.8 ± 4.8 vs 34.0 ±
7.3 mmHg) (p < 0.001 each) in the normotensive cohort. In contrast, no signifi-
cant changes in dP/dt, cPP, pPP and PPa are observed with administration of nora-
drenaline. Arterial compliance is found to be significantly decreased by dobutamine
(1.63 ± 0.49 vs 1.03 ± 0.22 ml/mmHg, p < 0.001) and, to a smaller amount, by no-
radrenaline (1.63 ± 0.49 vs 1.29 ± 0.36 ml/mmHg, p = 0.04). In the invasive cohort,
administration of glyceryl trinitrate significantly decreases cPP (62.2 ± 20.2 vs 45.2
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shows an increasing trend with decreasing compliance, namely at high pulse (Fig-
ures 5.11 A and 5.11 C). This can be explained using the water hammer equation.
Decreased compliance leads to increased Zc, producing an increase in the ampli-
tude of the forward pressure wave since in early systole, when reflected waves have
not yet arrived from the periphery, the pressure increase ∆p is equal to ∆p of the
forward wave: if the cardiac output ∆q is unaltered, the uprise in pressure will be
proportional to the increase in Zc.

The mechanisms underlying changes in pPP and PPa are now considered. In-
creased contractility by administration of dobutamine raise both pPP and PPa, whereas
increased or decreased compliance by administration of glyceryl trinitrate or nora-
drenaline do not alter pPP or PPa (Tables D.2 and D.3, Appendix D). This finding
suggests that contractility is the main driver for increased pPP and PPa, in agree-
ment with the in silico data shown in Figure 5.7, whereas compliance is a driver for
increased cPP only. Contractility determines the first inflection point (P1) on the
central blood pressure wave (Figure 5.7 B) and the peripheral systolic blood pres-
sure (pSBP) on the peripheral pressure wave (Figure 5.7 C), both occurring in early
systole. Therefore, pPP – and hence PPa – is determined by a wave propagation phe-
nomenon initiated by the a change in aortic flow wave morphology: the propagation
of the early systolic raise in BP towards the periphery, which is in agreement with
experimental (Gaddum et al., 2017) and theoretical (Flores Gerónimo et al., 2021) re-
sults. On the other hand, arterial compliance determines central (Figure 5.7 E) and
peripheral (Figure 5.7 F) pressure peaks later in systole (P2 and pSBP2, respectively),
with pSBP2 having a smaller magnitude than the contractility–dependent pSBP. As
a result compliance affects mainly cPP rather than pPP, in agreement with results us-
ing a central–to–peripheral transfer function (Li et al., 2021). The association of com-
pliance with cPP has been previously described by the Windkessel effect of central
elastic arteries (Vennin et al., 2017), where compliance undergoes a greater variation
than in peripheral muscular arteries (higher smooth muscle content) (Kondiboyina
et al., 2022; Reymond, Westerhof, and Stergiopulos, 2012), consistent with physio-
logical changes observed with ageing (Van Bortel and Spek, 1998; Charlton et al.,
2019).

This study is subject to several limitations. Carotid pressure is an imperfect sur-
rogate of aortic pressure and subject to calibration errors. In vivo measurements of
pressure and aortic flow velocity were not simultaneous and inevitably subject to ex-
perimental error that can propagate when calculating flow derived quantities, such
as rate of increase in early–systolic aortic flow. However, these errors are likely to be
random and unlikely to influence the conclusions of our study which have also been
confirmed by a physics–based cardiovascular model. Further validation of our re-
sults using more accurate methods for measuring flow, such as magnetic resonance,
would therefore be valuable. In vivo, it is challenging to alter left ventricular contrac-
tility through pharmacological interventions without affecting other haemodynamic
properties, including arterial compliance, and vice–versa. Dobutamine does not af-
fect uniquely inotropy and may have some vasodilator actions affecting compliance,
and noradrenaline and glyceryl trinitrate do not affect uniquely compliance and may
have some inotropic actions. The in silico model is therefore used to address this lim-
itation of in vivo data in determining the extent PPs, PPa, and aortic flow depend on
properties of the heart and arterial tree, by varying independently the cardiac and
vascular parameters and avoiding in vivo confounding factors. Finally, although the
in vivo normotensive cohort used in this study is limited, values of haemodynamics
quantities obtained in the normotensive cohort are corroborated by other studies ef-
fected in larger cohorts. The Framingham Heart Study (Mitchell et al., 2010) showed
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values of central and peripheral SBPs, total compliance, and dP/dt (64±8 mmHg,
115±11 mmHg, 1.71±0.53 ml/mmHg, 328.7±82.4 mmHg/s, respectively) in agree-
ment with those in Table D.1 in Appendix D. Moreover, the relationship between
PPs and dP/dt showed in this work is corroborated by the ACCT study (McEniery
et al., 2005) conducted on a cohort of 4001 healthy subjects, which showed that cPP,
pPP increase with ageing contemporary to the increase in dP/dt.

5.4 Concluding remarks

This Chapter shows applications of the arterial cardiovascular model to investi-
gate the effect of cardiac properties on blood pulse waves in the vasculature.

Section 5.2 presents a theoretical, computationally–based study to arouse inter-
est in assessing cardiac function from arterial pressure waves and peripheral PPG
signals. A cardiovascular model accounting for the numerical ventricular–aortic
coupling has been validated by showing its ability to simulate accurately cardiac
and vascular haemodynamics when compared with reference models validated us-
ing in vivo measurements. Results were in excellent agreement. The effect of the
parameters of the cardiac contraction model on vascular pulse waves has been stud-
ied through a sensitivity analysis, identifying the most significant parameters. In
the sensitivity analysis, those parameters that have no clinical characterisation have
been varied symmetrically by ±50%, obtaining values of left ventricular contrac-
tility in agreement with literature. Stenotic and regurgitant valves scenarios have
also been considered by varying the correspondent cardiac parameters in accordance
with physiological values. Specific haemodynamic indices have been identified to
understand how central and peripheral properties varied.
Results from the cardiovascular model suggest that cardiac parameters related to LV
contraction and systolic ejection can be potentially identified by pulse wave analy-
sis. Altered contractility affects aortic flow rate and pressure waveforms, which in
turn affect pulse pressure in central and peripheral sites. An impaired LV relaxation
phase can be identified from the analysis of the dicrotic notch timing. Moreover,
stenotic and regurgitant valves affect the flow rate at the aortic root and pressure
waveforms throughout the vasculature. Pulse pressure was found to increase with
aortic regurgitation, and to decrease with aortic stenosis. We have demonstrated
that an altered venous return in the left atrium affects left ventricular contractility
and arterial pulse pressures. In addition, the variations in pulse waves caused by
changes in cardiac function were found to amplify towards the periphery of the
systemic vasculature, suggesting the suitability of peripheral sites (e.g., radial and
digital arteries) for assessing cardiac function. Finally, PPG signals in the periphery
were found to vary with changes in cardiac parameters and diseased valves, sug-
gesting that further work on the analysis of peripheral PPG signals could improve
cardiac dysfunction detection from easily–accessible pulse waves measurements.

Section 5.3 presents a study where in vivo and in silico data were use complemen-
tarily to infer the role of cardiac contraction on isolate systolic hypertension. Results
suggest that isolated systolic hypertension is more likely a result of dynamic (i.e.,
ventricular) than static (i.e., vascular) pathologies. Therefore, interventions that in-
fluence left ventricular dynamics with a direct action on systolic ejection and aortic
flow rate may be particularly effective in reducing PP and systolic hypertension, in-
dependent of vascular properties. Having established that peripheral systolic BP,
which is used to assess clinical risk associated with hypertension and guide clinical
care (Li et al., 2021) is mainly determined by ventricular dynamics also highlights
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the importance of targeting the ventricle when treating hypertension. Furthermore,
having ascertained that PP amplification is mainly determined by contractility, and
hence an indication of ventricular inotropy, noninvasive measurements of PP am-
plification from carotid (a surrogate for aortic pressure) to brachial or radial artery
could offer cheap, pressure–based, assessment of left ventricular function.
By using a complementary mix of in vivo and in silico data, results show that ventri-
cular contractility influences systolic ejection, shaping aortic flow morphology and
playing a primary role in raising and amplifying pulse pressure with hypertension.
Arterial compliance is found to play a secondary role and peripheral wave reflec-
tions to play a minor role. The diagnosis and clinical treatment of hypertension may
therefore improve by targeting systolic ejection patterns and aortic flow.
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Chapter 6

Conclusions

6.1 Overview

The goal of this PhD Thesis was to propose a numerical model able to simulate
physiological haemodynamics of the arterial circulatory system to contribute to the
study of cardiovascular diseases.
The first part of this Thesis is purely computational and based on concepts of fluid
mechanics and numerical analysis. It focuses on the numerical implementation of
extended networks of viscoelastic vessels in order to obtain results that correctly re-
produce physiological pulse waves. Vessels wall viscoelasticity is considered in all
sections of the network where arteries converge and at the inlet and outlet sections.
At junctions, a Riemann problem was proposed consisting of a nonlinear system of
equations based on the conservation of mass and total pressure and the Riemann
Invariants characterising the hyperbolic PDE governing system. A specific Riemann
Invariant, relating pressure and area, allowed to consider the viscoelastic contribu-
tion. This numerical approach was then extended also to inlet and outlet boundary
conditions. The proposed numerical scheme was validated using trivial test cases,
corroborating the preservation of the second–order accuracy even when considering
viscoelastic boundary conditions. The approach was then tested with increasing–
complexity networks, validating the obtained results with reference waveforms.
The second part of this Thesis employs the proposed cardiovascular model to inves-
tigate the relationship between cardiac dynamics and vascular properties. A sen-
sitivity analysis was performed on pressure pulse waves when cardiac parameters
of the cardiac contraction model were altered. This allowed to identify the param-
eters regulating cardiac dynamics that most affect pulse waves in the circulation,
and therefore to study the underlying relationships between cardiac function and
vascular haemodynamics. Then, a complementary in silico–in vivo study was car-
ried out to examine the role of cardiac dynamics and vascular properties in elevat-
ing pulse pressure in isolate systolic hypertension. Numerical results, obtained by
varying cardiac and vascular properties in the cardiovascular model, were validated
with experimental data gathered in cohorts of subjects whose physiological condi-
tions were altered with pharmacological intervention. Furthermore, waveforms of
central and peripheral blood pressure and aortic flow rate where analysed with in-
creasing contractility and decreasing vascular compliance, and reflection coefficients
were studied.

6.2 Main findings and Original contributions

The achievements of the presented research can be differentiated in two main
parts: the implementation of the numerical model for networks with viscoelastic
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vessels, and the application of this model to investigate the effects of cardiac prop-
erties on vascular waveforms.

6.2.1 Viscoelasticity in extended networks

The mathematical model to simulate blood flow in compliant vessels has been
presented with particular emphasis on its augmented fluid–structure interaction
form. The proposed model allows the simulation of the viscoelastic mechanical
behaviour of arterial and venous walls. From a mathematical point of view, this
is straightforwardly accomplished by considering the source term in the tube law
of the governing PDE system. The source term contains all three viscoelastic pa-
rameters of the Standard Linear Solid Model, therefore its consideration allows an
easy transition from a purely elastic characterisation of the wall to a viscoelastic
one, enabling a correct description of the cross–sectional luminal area deformation
when undergoing pressure pulses. Having all viscoelastic information enclosed in
the source term avoids the presence of second order derivatives and permits to work
with a purely hyperbolic system of equations. The proposed Junction Riemann prob-
lem allows the viscoelastic contribution to be considered in all internal and external
boundary sections without decreasing the order of accuracy prescribed by the FV
IMEX-SSP2 RK scheme, even when dealing with a stiff source term, thus confirm-
ing its asymptotic preserving property. The model has been exhaustively validated
with success, showing a satisfying agreement with both 1-D and 3-D reference wave-
forms, in test cases characterised by increasing complexity and different viscoelastic
formulations. The consistency between the system response and the mechanical fea-
tures of the Standard Linear Solid Model was confirmed. Indeed, the damping effect
is observable by the opening of the hysteresis loops, but the extent of its manifesta-
tion strictly depends on the viscoelastic parameters that define the Standard Linear
Solid Model.

6.2.2 Key role of ventricular ejection in shaping vascular pulse waves

The proposed cardiovascular model was validated with reference waveforms of
cardiac and vascular haemodynamics. The sensitivity analysis performed on the
parameters of the cardiac contraction model provided interesting insights into the
amount of information related to cardiac function inferable form vascular pulse
waves. Results showed that the contractility of the left atrium has a little effect
on pressure waves, which are instead significantly influenced by the contractility
of the left ventricle. It was proved that the timing of the dicrotic notch is an indica-
tor of ventricular dysfunction. Moreover, simulations of impaired heart valves have
shown significant changes in pulse waves. A regurgitant or stenotic aortic valve al-
ters aortic flow rate and central and peripheral pressure waves. A dysfunction in
the mitral valve, albeit with minor effect, was also inferred from pulse wave analy-
sis. Variations in pulse waves caused by alterations in cardiac function were found
to be amplified towards the periphery of the vasculature. Finally, PPG signals were
found to vary with altered cardiac function and diseased valves.

The effect of cardiac function on vascular pulse waves was also investigated with
specific application to isolate systolic hypertension, which often manifests with an
increase in pulse pressure. In vivo and in silico results showed the overwhelming im-
portance of contractility and left ventricular ejection in raising pulse pressure. The
rooted knowledge of the influence of vascular properties, such as arterial compli-
ance and stiffness, in elevating pulse pressure was not denied, but an additional
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contribution to this haemodynamic phenomenon was highlighted. Results showed
that ventricular contractility plays a major role in the shaping the aortic flow rate,
which has direct implications on the determination of central and peripheral blood
pressure waves. Increased contractility raised pulse pressure and, in particular, its
amplification in peripheral sites of the vasculature. A decrease in vascular compli-
ance produced an increase in central pulse pressure, but had little influence on pulse
pressure amplification. The underlying haemodynamics mechanism was identified
as the increase in the forward–travelling pressure wave, which resulted to be greater
than that in the backward–travelling pressure wave, at high pulse pressure and con-
tractility. This was also corroborated by the increase in the first systolic peak in both
central and peripheral blood pressure waves, becoming determinants for pulse pres-
sure.

6.3 Future work

One of the main future goals, for a further development of this PhD research,
consists in the numerical implementation of a closed–loop circulatory system, there-
fore comprehensive of the venous and pulmonary circulations, as well as the splanch-
nic circulation, which actually contains almost 25% of blood volume in adult hu-
mans, therefore having important implications for systemic haemodynamics. The
implementation of the closed loop would be realised using the 1-D augmented fluid–
structure interaction system as this is capable of dealing with different mechanical
configurations of vessels walls, as presented for trivial venous tests. Organs would
be treated as 0-D lumped–parameters models. The realisation of the entire human
circulation would provide an even more effective tool to substantially support stud-
ies of cardiac and circulatory diseases and broad–spectrum medical applications.

The application of uncertainty quantification theory represents a valuable ap-
proach to quantitative characterise and understand uncertainties related to the vis-
coelastic parameters for the simulation of pulse waves in the cardiovascular net-
work. Indeed, the effect of viscoelastic formulation on the manifestation of the
damping behaviour could be statistically quantified, also depending on the site of
analysis in the network, i.e., the response in pulse waves morphology at a specific
arterial site caused by a variation in viscoelastic properties in either the same site or
another. The work carried out by means of a univariate sensitivity analysis could
also be improved using more refined uncertainty quantification techniques. This
would produce more solid results regarding the effects of cardiac parameters varia-
tions in vascular pulse waves.

The work on cardiac function assessment by pulse wave analysis, although purely
computational, is considered to be useful in clinical research. Peripheral sites have
been shown to be easily–accessible measurements sites for detecting cardiac func-
tion, as the alterations in pulse waves are amplified compared to central sites. How-
ever, the study should be refined and further backed up. For this purpose, a large
measurement campaign should be performed with both healthy and heart–diseased
subjects in order to have access to a multitude of in vivo pulse waves for different
physiological scenarios. With this regard, PPG signals represent a valuable resource
to cardiac dysfunction analysis from pulse waves as they are obtainable from a large
portion of the population by means of smart devices. Machine learning algorithms,
which are commonly used today as they can process huge amounts of data in an
automatised manner, represent a feasible tool to further develop the detection of
cardiac dysfunction from pulse wave analysis.
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Finally, the study on pulse pressure elevation in isolate systolic hypertension
has important clinical implications. It highlights the non–negligible contribution of
left ventricular contractility to this cardiovascular disease, which has been usually
overlooked in favour of the vascular contribution related to arterial stiffness. Future
developments of this work would involve the analysis of additional in vivo data of
wider cohorts with diverse physiological conditions. Besides, the completion of the
cardiovascular model would be useful to the study of hypertension because it could
highlight other driving factors for pulse pressure increase, as well as the presence of
compensatory haemodynamic mechanisms.
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Appendix A

Viscoelastic SLSM parameters of
numerical tests

Tables A.1, A.2 and A.3 report the Standard Linear Solid Model (SLSM) param-
eters for every bifurcation/network test implemented in this work, namely for the
3-vessel test (aortic bifurcation), the AN37 and the ADAN56. It is reminded to the
reader that ADAN56 is characterized by a unique set of viscoelastic parameters for
the entire network. Tables are reported here to facilitate the assessment of further
analysis.

TABLE A.1: Viscoelastic SLSM parameters for the aortic bifurcation
test: instantaneous Young modulus E0, asymptotic Young modulus

E∞, ratio z = E∞/E0, viscosity coefficient η and relaxation time τr.

Vessel name
E0

[MPa]
E∞

[MPa]
z
[-]

η
[kPa·s]

τr
[ms]

Abdominal aorta 1.4293 0.6667 0.466 58.664 21.89

Iliac artery 3.8986 0.9333 0.239 109.97 21.45

TABLE A.2: Viscoelastic SLSM parameters for the ADAN56 network:
instantaneous Young modulus E0, asymptotic Young modulus E∞,

ratio z = E∞/E0, viscosity coefficient η and relaxation time τr.

Vessel name
E0

[MPa]
E∞

[MPa]
z
[-]

η
[kPa·s]

τr
[ms]

∀ vessels 0.4431 0.3000 0.677 30.00 21.87
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TABLE A.3: Viscoelastic SLSM parameters for the AN37 network: in-
stantaneous Young modulus E0, asymptotic Young modulus E∞, ra-
tio z = E∞/E0, viscosity coefficient η and relaxation time τr. In vessel
names, R. stands for the right artery and L. stands for the left artery.

Vessel name
E0

[MPa]
E∞

[MPa]
z
[-]

η
[kPa·s]

τr
[ms]

Ascending aorta 1.6860 1.6 0.949 4.0268 0.12
Innominate 1.6846 1.6 0.950 3.9654 0.12
R. Carotid 1.6869 1.6 0.948 4.0702 0.12
R. Subclavian I 1.6857 1.6 0.949 4.0120 0.12
R. Subclavian II 1.6843 1.6 0.950 3.9493 0.12
R. Radial 1.6851 1.6 0.949 3.9869 0.12
R. Ulnar 1.6872 1.6 0.948 4.0837 0.13
Aortic arch I 1.6853 1.6 0.949 3.9945 0.12
L. Carotid 1.6863 1.6 0.949 4.0403 0.12
Aortic arch II 1.6846 1.6 0.950 3.9631 0.12
L. Subclavian I 1.6865 1.6 0.949 4.0519 0.12
L. Subclavian II 1.6879 1.6 0.948 4.1153 0.13
L. Radial 1.6861 1.6 0.949 4.0299 0.12
L. Ulnar 1.6874 1.6 0.948 4.0904 0.13
Thoracic aorta I 1.6857 1.6 0.949 4.0149 0.12
Intercostals 1.6857 1.6 0.949 4.0120 0.12
Thoracic aorta II 1.6843 1.6 0.950 3.9493 0.12
Celiac I 1.6855 1.6 0.949 4.0057 0.12
Celiac II 1.6854 1.6 0.949 3.9990 0.12
Splenic 1.6833 1.6 0.950 3.9059 0.11
Gastric 1.6877 1.6 0.948 4.1032 0.13
Hepatic 1.6849 1.6 0.950 3.9762 0.12
Abdominal aorta I 1.6847 1.6 0.950 3.9664 0.12
L. Renal 1.6836 1.6 0.950 3.9196 0.12
Abdominal aorta II 1.6861 1.6 0.949 4.0299 0.12
R. Renal 1.6858 1.6 0.949 4.0199 0.12
Abdominal aorta III 1.6851 1.6 0.949 3.9869 0.12
R. Iliac femoral I 1.6872 1.6 0.948 4.0837 0.13
R. Iliac femoral II 1.6884 1.6 0.948 4.1374 0.13
Iliac femoral R. III 1.6831 1.6 0.951 3.8929 0.11
L. Iliac femoral I 1.6868 1.6 0.949 4.0622 0.12
L. Iliac femoral II 1.6874 1.6 0.948 4.0904 0.13
L. Iliac femoral III 1.6871 1.6 0.948 4.0795 0.12
R. Anterior tibial 1.6835 1.6 0.950 3.9117 0.12
R. Posterior tibial 1.6864 1.6 0.949 4.0434 0.12
L. Posterior tibial 1.6832 1.6 0.951 3.8980 0.11
L. Anterior tibial 1.6843 1.6 0.950 3.9493 0.12
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Appendix B

Simulation of PPG signals

The PPG is conceived as a measurement of volumetric change of arterial blood in
a tissue (Charlton et al., 2019; Huttunen et al., 2020). From an operational standpoint,
PPG signals were calculated, following the methodology presented by Charlton et
al. (2019), depending on the site of analysis:

– At the most peripheral vessels of the circulation (e.g., the digital artery), the
PPG was calculated from the volume of blood stored in the terminal Wind-
kessel model:

PPG(t) =
∫ t

0
q1D(t′)− qout(t′)dt′, (B.0.1)

where q1D is the inflow to the terminal Windkessel, and qout is the outflow, as
shown in Fig. 4.1.

– At local microvasculature sites of the arterial network (e.g., the wrist), the typ-
ical Windkessel scheme was employed once again to model blood volume dy-
namics and calculate the PPG. The validity of this hypothesis relies on the fact
that vascular beds receive blood from arterioles that diverge from the affer-
ent major artery (e.g., the radial artery at the wrist), overcoming the impasse
caused by the lack of modelling of these arterioles within the 1-D arterial net-
work due to their small size. Hence, the inflow and inlet pressure of the Wind-
kessel model were set equal to the flow and pressure of the arterial segment,
q1D and p1D, respectively. The PPG was calculated using Eq. (B.0.1), in which
qout was obtained as

qout(t) =
p1D(t)− pout

R
, (B.0.2)

and defining

R =
⟨p1D(t)⟩ − pout

⟨q1D(t)⟩
. (B.0.3)

In (B.0.3), pout is the outflow pressure, and ⟨p1D⟩ and ⟨q1D⟩ are the blood pres-
sure and flow rate, respectively, obtained at the site of analysis and averaged
over the cardiac cycle.

In both cases, the PPG was finally obtained by normalising the pulsatile variation in
blood volume within the range [0, 1].
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Appendix C

Cardiac function assessment using
the pulse wave analysis

C.1 Sensitivity Analysis: reference parameters

Reference values for Vnet and T were 66.3 ml and 0.822 s, respectively (Charlton
et al., 2019). Tables C.1 and C.2 show the reference cardiac parameters (Mynard
and Smolich, 2015) that were increased by +50 % and decreased by −50 % in the
sensitivity analysis.

TABLE C.1: Reference parameters of the cardiac contraction model
for the heart chambers: left atrium (LA) and left ventricle (LV).

Emin Emax KS vp0 v0 m1 τ1 m2 τ2 tonset
Chamber [ Pa

cm3 ] [ Pa
cm3 ] [ s

cm3 ] [cm3] [cm3] [-] [s] [-] [s] [s]
LA 12.0 17.3 250 3.00 7.10 1.99 0.042 11.2 0.138 0.00
LV 9.33 373 500 1.00 136 1.32 0.215 21.9 0.362 0.65

TABLE C.2: Reference parameters of the cardiac contraction model
for the heart valves: mitral valve (MV) and aortic valve (AV). The

reference Amin is equal to zero for both valves.

Amax l Kvo Kvo
Valve [cm2] [cm] [Pa−1s−1] [Pa−1s−1]
MV 5.1 2.0 0.2 0.4
AV 4.9 1.0 0.2 0.2

C.2 Sensitivity Analysis: RMSD

Table C.3 shows the RMSD evaluated in the three sites of analysis in the network,
i.e., the aortic root (AoRt), the brachial artery (Br), and the digital artery (Di). Results
are reported for each cardiac parameter and for both variations, i.e ±50 %.
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TABLE C.3: Root mean square deviations (RMSD) in mmHg resulted
from the sensitivity analysis performed in an univariate manner. The
Increased and Decreased columns stand for the simulations with the
increased or decreased cardiac parameter, respectively. The amount
of variation for each parameter is addressed in Sect 5.2.1. Cardiac
parameters are classified per cardiac site, namely left ventricle (LV),
left atrium (LA), aortic valve (AV), and mitral valve (MV). The total
volume entering the LA in a cardiac cycle, Vnet, and the cardiac cycle
duration T are not attributed to any cardiac site because they describe
overall cardiac function. Significant parameters are reported in bold.

Cardiac site Param.
Increased Decreased

AoRt Br Di AoRt Br Di

–
Vnet 21.9 22.0 21.8 22.4 22.5 22.5
T 10.0 11.0 14.3 14.5 15.7 19.6

LV

Emax 3.43 5.54 8.88 5.51 8.08 12.4
Emin 0.80 0.92 1.19 0.58 0.82 1.14
m1 6.42 9.76 15.3 8.34 12.7 19.4
τ1 2.97 4.45 7.08 5.22 7.94 12.6
m2 0.63 0.97 1.44 1.41 2.19 3.32
τ2 3.26 4.62 6.80 7.17 10.9 17.7
vp0 0.07 0.10 0.14 0.06 0.09 0.12
Ks 1.09 1.67 2.62 1.30 2.01 3.26

LA

Emax 0.35 0.38 0.42 0.78 0.78 0.77
Emin 0.03 0.09 0.14 0.04 0.04 0.04
m1 0.02 0.08 0.12 0.04 0.09 0.13
τ1 0.02 0.07 0.10 0.03 0.03 0.03
m2 0.03 0.09 0.14 0.01 0.06 0.10
τ2 0.05 0.09 0.12 0.26 0.27 0.28
vp0 0.07 0.09 0.14 0.03 0.03 0.03
Ks 0.02 0.07 0.10 0.04 0.09 0.13

AV

Amax 0.55 0.78 1.10 3.27 4.82 7.25
Amin 12.8 16.6 22.6 - - -
l 0.47 0.72 1.0 0.56 0.80 1.16
Kvo 0.09 0.09 0.15 0.17 0.32 0.51
Kvc 0.29 0.43 0.61 0.80 1.13 1.59

MV

Amax 0.09 0.12 0.15 4.09 4.09 4.02
Amin 4.34 6.73 10.4 - - -
l 0.04 0.09 0.13 0.04 0.09 0.14
Kvo 0.03 0.07 0.11 0.04 0.09 0.12
Kvc 0.02 0.07 0.11 0.02 0.07 0.11
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Appendix D

Ventricular ejection and pulse
pressure

TABLE D.1: Characteristics of the in vivo cohorts and in silico model.
Values are numbers, percentage, or means±SD. BMI, body mass in-
dex; HR, heart rate; cSBP, central systolic blood pressure; pSBP, pe-
ripheral systolic blood pressure; DBP, diastolic blood pressure; LVOT
diameter, left ventricular outflow tract diameter; SV, stroke volume;

dP/dt, contractility index, C, arterial compliance.

Characteristics
Normotensive Hypertensive Invasive In silico

cohort cohort cohort model
n 10 93 23 1
Age [year] 47±8 46±16 62±10 45
Sex [male %] 77 59 78 100
BMI [kg/m2] – 26.5±9.2 29.1±3.6 –
HR [bpm] 65±8 66±10 61±10 72
cSBP [mmHg] 103.2±15.4 134.4±22.3 129.3±23.6 103.7
pSBP [mmHg] 119.6±16.9 144.4±21.6 139.9±26 124.6
DBP [mmHg] 65.6±9.0 88.1±13.7 67.0±9.2 75.8
LVOT diameter [cm] 1.87±0.18 1.96±0.25 – 2.5
SV [ml] 59.9±13.0 77.9±24.8 – 66.4
dP/dt [mmHg/s] 349.9±101.2 421.9±112.4 378.8±130.5 347.4
C [ml/mmHg] 1.6±0.5 1.3±0.5 – 1.9
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TABLE D.2: Variations in haemodynamic quantities with administra-
tion of pharmacological drugs in the normotensive cohort. Haemo-
dynamic quantities of the normotensive cohort measured at baseline
(second column), maximum dose of dobutamine (DB = 7.5 µg/kg per
minute, third column), and maximum dose of noradrenaline (NA =
50 µg/kg per minute, fourth column). Haemodynamic quantities are
central pulse pressure (cPP), peripheral pulse pressure (pPP), pulse
pressure (PP) amplification, contractility index (dP/dt), arterial com-
pliance, stroke volume, peak flow, rate of increase in early–systolic
aortic flow (∆q/∆tES), rate of decrease in late–systolic aortic flow
(∆q/∆tLS), peak emission coefficient (γpeak, see main article for de-
tails), and peak reflection coefficient (RCpeak, see main article for de-
tails). Values are reported as mean±SD. Two-sample t-tests were
performed to compare the haemodynamic quantities at baseline and
with drug administration. Results are reported in the third and fourth
columns as t(df) = t-value, where df stands for degrees of freedom
from the t-test statistics. Asterisks indicate a significant difference
between the haemodynamic variable at baseline and after maximum

drug dose administration.

Baseline DB (max dose) NA (max dose)

cPP [mmHg]
36.1±8.8 59.0±10.8 36.8±8.9

t(28) = -6.2, p < 0.001 * t(28) = -0.2, p = 0.85

pPP [mmHg]
56.9±13.1 93.0±17.0 57.8±12.4

t(28) = -6.4, p < 0.001 * t(28) = -0.2, p = 0.86

PP amplification [mmHg]
20.8±4.8 34.0±7.3 21.0±7.3

t(28) = -5.9, p < 0.001 * t(28) = -0.12, p = 0.90

dP/dt [mmHg/s]
349.9±101.2 754.0±186.3 343.7±69.7

t(12) = -6.4, p < 0.001 * t(25) = 0.2, p = 0.85

Compliance [ml/mmHg]
1.63±0.49 1.03±0.22 1.29±0.36

t(28) = 4.6, p < 0.001 * t(23) = 2.1, p = 0.04 *

Stroke volume [ml]
59.9±13.0 61.1±10.5 56.02±13.7

t(22) = -0.2, p = 0.78 t(17) = 0.7, p = 0.45

Peak flow [ml/s]
323.9±52.8 389.1±65.1 297.9±67.3

t(15) = -2.7, p = 0.015 * t(15) = 1.1, p = 0.30

∆q/∆tES [ml/s2]
3193.6±793.0 4848.3±450.4 2807.0±675.8

t(22) = -6.8, p < 0.001 * t(21) = 1.4, p = 0.18

∆q/∆tLS [ml/s2]
1433.6±235.8 2020.0±404.8 1235.4±288.4

t(12) = -4.2, p = 0.001 * t(16) = 1.9, p = 0.08

γpeak [-] 2.01±0.39 2.56±0.66 1.95±0.21
t(47) = -3.7, p < 0.001 * t(26) = 0.7, p = 0.48

RCpeak [-] 0.66±0.05 0.57±0.07 0.69±0.03
t(47) = 4.9, p < 0.001 * t(31) = -2.3, p = 0.03 *
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TABLE D.3: Variations in haemodynamic quantities with adminis-
tration of GTN in the invasive cohort. Haemodynamic quantities of
the in vivo invasive cohort measured at baseline (second column) and
after administration of glyceryl trinitrate (GTN, 500 µg; third col-
umn). Haemodynamic quantities are central pulse pressure (cPP),
peripheral pulse pressure (pPP), pulse pressure (PP) amplification,
contractility index (dP/dt), and time constant of the exponential re-
laxation decay (Mariscal-Harana et al., 2021) of the central blood pres-
sure waveform. Values are reported as mean±SD. Two-sample t-tests
were performed to compare the haemodynamic quantities at baseline
and with GTN administration. Results are reported in the third col-
umn as t(df) = t-value, where df stands for degrees of freedom from
the t-test statistics. Asterisks indicate a significant difference between
the haemodynamic variable at baseline and after drug dose adminis-

tration.

Baseline GTN

PP [mmHg] 62.2±20.2
45.2±17.8

t(44) = 3.0, p = 0.004 *

pPP [mmHg] 73.1±22.5
68.9±17.9

t(44) = 0.7, p = 0.49

PP amplification [mmHg] 33.4±16.3
30.3±12.2

t(44) = 0.7, p = 0.48

dP/dt [mmHg/s] 378.8±130.5
331.7±117.5

t(44) = 1.3, p = 0.20

Time constant [s] 0.47±0.19
0.82±0.68

t(44) = -2.45, p = 0.02 *

TABLE D.4: Fiducial points of the central and peripheral BP waves
measured in the 45–year–old virtual subject at baseline (first row),
with increased contractility (second row) and with decreased compli-
ance (third row). Percentage changes from baseline are shown in the
second and third rows. P1 is the first inflection point of the central
BP wave; P2 is the second systolic peak in the central BP wave; pSBP
is the first systolic shoulder in the peripheral BP wave; pSBP2 is the

second peak or shoulder in the peripheral BP wave.

Simulation P1 [mmHg] P2 [mmHg] pSBP [mmHg] pSBP2 [mmHg]
Baseline 100 111 130 104

Increased
contractility

110 (+9%) 112 (0%) 143 (+10%) 102 (-2%)

Decreased
compliance

102 (+1%) 122 (+9%) 132 (+2%) 118 (+13%)
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