The level of carbon dioxide in the atmosphere is constantly growing mainly due to anthropogenic activities causing the well known greenhouse effect that represent one of the greatest challenges to contemporary society. On this regard electroreduction of CO2 represents an appealing strategy to rethink a waste and an environmentally dangerous product as an innovative feedstock for the formation of value-added carbon neutral compounds. Among metal electrodes able to catalyze such process, copper plays a central role. The work of this thesis focuses into the development of new and innovative strategies aimed at tuning Cu selectivity comprise nanostructuring and alloying with heterometals. One of the more investigated nanostructuring strategies consist in the controlled formation of Cu oxides, which then undergo to a re-reduction in CO2R conditions. Several strategies have been reported for the oxidation of Cu foils’ surface. In this contribution, are reported straightforward electrochemical methods for the formation of Cu-In interfaces. The latter were fully characterized and then used as cathodes for CO2 electroreduction, leading to the selective production of Syngas with efficiencies that exceed 70% only for carbon monoxide, whose composition varies upon changing the applied bias and Indium content. Literature examples of copper-indium nanostructured catalysts for CO2R are now still limited.[5] In particular, the proposed Cu-In cathode in this work is able to efficiently catalyze gaseous mixtures compatible with the Fischer-Tropsch synthesis of methanol or aldehydes, that are produced at a relative low (i.e. -1.3 V vs SCE up to -1.6 V vs SCE) applied bias with the development of interesting stable current densities. During this research work was investigated the co-functionalization of also other metallic species than indium such as Cerium that was able to drive the selectivity of the copper interface towards an enhanced production of methane (up to 40% in faradic efficiency). Furthermore, thanks to a collaboration with the Milan University a detailed study of gold nanostructures deposited via PLD on FTO substrates was also performed leading to the development of a particularly efficient electrocatalyst for the production of Syngas and formic acid. In particular with the pulsed laser deposition it was possible to generate particular nanostructures that are not achievable by standard synthetic methodologies, two of these were found to be interesting in terms of catalytic performance. In fact the study was centered into the description of a columnar cathodic interface and a “foam” like surface, the latter was the most interesting due to it’s selectivity towards a Syngas mixture of 40% CO and 60% H2 at a low applied bias of -1.1V vs SCE, ideal for the synthesis of hydrocarbons with a wide range of molecular weight. The work described in this thesis leads to the publications in multiple scientific journal and the deposition of an Italian and European patent due to the collaboration of interested industries in the application of this know how, on this regard also a lot of specific studies were carried out with the aim of clarify the technoeconomic potential of this technology and the possibility to scale up from the laboratory scale to a plant simulation not only in theory but also with the design and development of larger electrochemical cells and setup.
Come è ormai ben noto i livelli di anidride carbonica nell’atmosfera stanno costantemente aumentando a causa delle attività umane contribuendo ogni giorno di più all’incremento dell’effetto serra la cui lotta rappresenta attualmente una delle più grandi sfide per la società contemporanea. In questo contesto la conversione elettrocatalitica dellaCO2 rappresenta un’interessante approccio a questo problema dal momento che permette di pensare a quello che fino ad oggi non può essere considerato altrimenti se non un prodotto di scarto, come ad una nuova ed interessante risorsa virtualmente ad impattoambientale nullo. Attraverso i processi riduttivi proposti in questo lavoro è infatti possibile accedere a molecole di grande importanza industriale ed energetica e dall’elevato valore aggiunto come ad esempio acido formico, metano e Syngas (una miscela di CO ed H2 alla base dei processi industriali di tipo Fisher-Tropsch utilizzati per la sintesi di idrocarburi). Tra i molti metalli che manifestano attività catalitica in questi processi il rame occupa sicuramente un ruolo centrale. Il lavoro principale esposto in questa tesi è infatti incentrato nello sviluppo di tecniche nuove ed innovative per incrementare la selettività di questo metallo attraverso procedure di nanostrutturazione e funzionalizzazione con diverse specie metalliche. Una delle vie maggiormente percorsa consiste nella formazione controllata di ossidi di rame sottoposti poi ad una successiva riduzione nello stesso ambiente di CO2R. Numerose strategie sono state riportate in letteratura a questo proposito. Sulla base di questi lavori è descritto un metodo puramente elettrochimico ed innovativo per la sintesi di interfacce rame-indio dalle ottime proprietà catalitiche. Questo tipo di catodi è stato studiato nel dettaglio e caratterizzato morfologicamente ed elettrochimicamente permettendo di poter osservare efficienze riduttive in grado di eccedere il 70% in solo monossido di carbonio con una conseguente selettività verso il Syngas attorno al 100% dipendentemente dal potenziale applicato e dalla quantità di indio fissata sulla superficie. La letteratura in merito ad elettrodi Cu-In è tuttora molto limitata, in particolare i catodi Cu-In descritti in questa tesi sono in grado di produrre selettivamente miscele di Syngas ideali per la sintesi di metanolo ed aldeidi (oltre che di idrocarburi a più elevato peso molecolare) a potenziali particolarmente accessibili contenuti in una finestra che va da -1.3V a -1.6V vs SCE con delle correnti associate compatibili per applicazioni su più ampia scala. Durante questo lavoro di ricerca sono stati sperimentati anche diversi altri metalli per la funzionalizzazione delle interfacce di rame, in particolare risultati interessanti sono stati ottenuti anche con la deposizione di Cerio, che ha modificato la selettività verso la produzione del metano con efficienze massime osservate attorno al 40%. Inoltre grazie ad una collaborazione con l’università di Milano è stato possibile studiare le caratteristiche di particolari catodi in oro depositati su FTO tramite PLD che si sono dimostrati particolarmente selettivi nei confronti del CO e dell’acido formico. La deposizione PLD ha infatti permesso di accedere a nuove e peculiari nano strutture non ottenibili tramite le tecniche tradizionali di deposizione. Sono infatti descritte interfacce decorate da nanostrutture di forma colonnare e porosa, quest’ultima particolarmente selettiva per miscele di Syngas 40% CO e 60% H2 (ideale per la sintesi di idrocarburi a vario range di pesi molecolari) prodotte a potenziali relativamente blandi attorno a -1.1V vs SCE. Il lavoro contenuto in questa tesi di dottorato è stato oggetto di pubblicazioni su riviste di settore ed ha portato al deposito di un brevetto italiano ed europeo grazie alla collaborazione con realtà industriali interessate all’applicazione di questo tipo di tecnologie.
Electroreduction of carbon dioxide over nanostructured metallic cathodes: a route towards artificial photosynthesis
NIORETTINI, Alessandro
2023
Abstract
The level of carbon dioxide in the atmosphere is constantly growing mainly due to anthropogenic activities causing the well known greenhouse effect that represent one of the greatest challenges to contemporary society. On this regard electroreduction of CO2 represents an appealing strategy to rethink a waste and an environmentally dangerous product as an innovative feedstock for the formation of value-added carbon neutral compounds. Among metal electrodes able to catalyze such process, copper plays a central role. The work of this thesis focuses into the development of new and innovative strategies aimed at tuning Cu selectivity comprise nanostructuring and alloying with heterometals. One of the more investigated nanostructuring strategies consist in the controlled formation of Cu oxides, which then undergo to a re-reduction in CO2R conditions. Several strategies have been reported for the oxidation of Cu foils’ surface. In this contribution, are reported straightforward electrochemical methods for the formation of Cu-In interfaces. The latter were fully characterized and then used as cathodes for CO2 electroreduction, leading to the selective production of Syngas with efficiencies that exceed 70% only for carbon monoxide, whose composition varies upon changing the applied bias and Indium content. Literature examples of copper-indium nanostructured catalysts for CO2R are now still limited.[5] In particular, the proposed Cu-In cathode in this work is able to efficiently catalyze gaseous mixtures compatible with the Fischer-Tropsch synthesis of methanol or aldehydes, that are produced at a relative low (i.e. -1.3 V vs SCE up to -1.6 V vs SCE) applied bias with the development of interesting stable current densities. During this research work was investigated the co-functionalization of also other metallic species than indium such as Cerium that was able to drive the selectivity of the copper interface towards an enhanced production of methane (up to 40% in faradic efficiency). Furthermore, thanks to a collaboration with the Milan University a detailed study of gold nanostructures deposited via PLD on FTO substrates was also performed leading to the development of a particularly efficient electrocatalyst for the production of Syngas and formic acid. In particular with the pulsed laser deposition it was possible to generate particular nanostructures that are not achievable by standard synthetic methodologies, two of these were found to be interesting in terms of catalytic performance. In fact the study was centered into the description of a columnar cathodic interface and a “foam” like surface, the latter was the most interesting due to it’s selectivity towards a Syngas mixture of 40% CO and 60% H2 at a low applied bias of -1.1V vs SCE, ideal for the synthesis of hydrocarbons with a wide range of molecular weight. The work described in this thesis leads to the publications in multiple scientific journal and the deposition of an Italian and European patent due to the collaboration of interested industries in the application of this know how, on this regard also a lot of specific studies were carried out with the aim of clarify the technoeconomic potential of this technology and the possibility to scale up from the laboratory scale to a plant simulation not only in theory but also with the design and development of larger electrochemical cells and setup.File | Dimensione | Formato | |
---|---|---|---|
Tesi Dottorato_Niorettini_Alessandro.pdf
Open Access dal 25/02/2024
Descrizione: Electroreduction of carbon dioxide over nanostructured metallic cathodes: a route towards artificial photosynthesis
Tipologia:
Tesi di dottorato
Dimensione
16.54 MB
Formato
Adobe PDF
|
16.54 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.