Fused-filament fabrication is one of the most popular 3D printing techniques for thermoplastic materials because it is easy to use and is low-cost. On the other hand, it has the great limit of being suitable only for developing prototypes, because the printed object generally has low mechanical properties, and this prevents its use in structural applications. To solve this issue, the scientific literature has mainly focused on the optimization of the printing parameters and on performing some post-printing treatments, e.g., annealing, but despite some results being very promising, the topic has not yet been exhaustively investigated. In this paper, a post-printing treatment was studied that was based on two subsequent stages of remelting and compaction within a mold made of a granular material. The material chosen for this study was a green composite made of poly-(lactic acid) and poly-(hydroxyalkanoate) filled with wood fibers. The density, mechanical properties in terms of tension and microscopic observations were used to evaluate the treatment effectiveness. The main results were that voids were reduced, and the quality of the interlayer welding was increased, and this improved the mechanical properties, both in terms of stiffness and strength. In particular, the initial specimens displayed remarkable anisotropy, being stronger and stiffer in the longitudinal direction. After the post-processing treatment, despite the longitudinal properties having a very limited increase, the transversal properties increased significantly until they reached the longitudinal properties, thus leading to a more isotropic material.

A Post-Processing Method for Improving the Mechanical Properties of Fused-Filament-Fabricated 3D-Printed Parts

Malagutti, Lorenzo
Primo
;
Ronconi, Giulia
Secondo
;
Zanelli, Marco;Mollica, Francesco
Penultimo
;
Mazzanti, Valentina
Ultimo
2022

Abstract

Fused-filament fabrication is one of the most popular 3D printing techniques for thermoplastic materials because it is easy to use and is low-cost. On the other hand, it has the great limit of being suitable only for developing prototypes, because the printed object generally has low mechanical properties, and this prevents its use in structural applications. To solve this issue, the scientific literature has mainly focused on the optimization of the printing parameters and on performing some post-printing treatments, e.g., annealing, but despite some results being very promising, the topic has not yet been exhaustively investigated. In this paper, a post-printing treatment was studied that was based on two subsequent stages of remelting and compaction within a mold made of a granular material. The material chosen for this study was a green composite made of poly-(lactic acid) and poly-(hydroxyalkanoate) filled with wood fibers. The density, mechanical properties in terms of tension and microscopic observations were used to evaluate the treatment effectiveness. The main results were that voids were reduced, and the quality of the interlayer welding was increased, and this improved the mechanical properties, both in terms of stiffness and strength. In particular, the initial specimens displayed remarkable anisotropy, being stronger and stiffer in the longitudinal direction. After the post-processing treatment, despite the longitudinal properties having a very limited increase, the transversal properties increased significantly until they reached the longitudinal properties, thus leading to a more isotropic material.
2022
Malagutti, Lorenzo; Ronconi, Giulia; Zanelli, Marco; Mollica, Francesco; Mazzanti, Valentina
File in questo prodotto:
File Dimensione Formato  
processes-10-02399.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2504509
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 12
social impact