A gold nanoparticles transparent electrode was realized by chemical reduction. This work aims to compare the transparent gold nanoparticles electrode with a more commonly utilized gold-film-coated electrode in order to investigate its potential use as counter-electrode (CE) in dyesensitized solar cells (DSSCs). A series of DSSC devices, utilizing I−/I3− and Co(III)/(II) polypyridine redox mediators [Co(dtb)3]3+/2+; dtb = 4,4′ ditert-butyl-2,2′-bipyridine)], were evaluated. The investigation focused firstly on the structural characterization of the deposited gold layers and then on the electrochemical study. The novelty of the work is the realization of a gold nanoparticles CE that reached 80% of average visible transparency. We finally examined the performance of the transparent gold nanoparticles CE in DSSC devices. A maximum power conversion efficiency (PCE) of 4.56% was obtained with a commercial I−/I3−-based electrolyte, while a maximum 3.1% of PCE was obtained with the homemade Co-based electrolyte.

Optically Transparent Gold Nanoparticles for DSSC Counter-Electrode: An Electrochemical Characterization

Caramori Stefano
Penultimo
;
Bignozzi Carlo Alberto
Ultimo
2022

Abstract

A gold nanoparticles transparent electrode was realized by chemical reduction. This work aims to compare the transparent gold nanoparticles electrode with a more commonly utilized gold-film-coated electrode in order to investigate its potential use as counter-electrode (CE) in dyesensitized solar cells (DSSCs). A series of DSSC devices, utilizing I−/I3− and Co(III)/(II) polypyridine redox mediators [Co(dtb)3]3+/2+; dtb = 4,4′ ditert-butyl-2,2′-bipyridine)], were evaluated. The investigation focused firstly on the structural characterization of the deposited gold layers and then on the electrochemical study. The novelty of the work is the realization of a gold nanoparticles CE that reached 80% of average visible transparency. We finally examined the performance of the transparent gold nanoparticles CE in DSSC devices. A maximum power conversion efficiency (PCE) of 4.56% was obtained with a commercial I−/I3−-based electrolyte, while a maximum 3.1% of PCE was obtained with the homemade Co-based electrolyte.
2022
Barichello, Jessica; Spadaro, Donatella; Gullace, Sara; Sinopoli, Alessandro; Calandra, Pietro; Irrera, Alessia; Matteocci, Fabio; Calogero, Giuseppe;...espandi
File in questo prodotto:
File Dimensione Formato  
molecules-27-04178-v2.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 2.45 MB
Formato Adobe PDF
2.45 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2502880
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact