The occurrence of rhyolite melts in the mantle has been predicted by high pressure-high temperature experiments but never observed in nature. Here we report natural quartz-bearing rhyolitic melt inclusions and interstitial glass within peridotite xenoliths. The oxygen isotope composition of quartz crystals shows the unequivocal continental crustal derivation of these melts, which approximate the minimum composition in the quartz-albite-orthoclase sys tem. Thermodynamic modelling suggests rhyolite was originated from partial melting of near-anhydrous garnet-bearing metapelites at temperatures ~1000 °C and interacted with peridotite at pressure ~1 GPa. Reaction of rhyolite with olivine converted lherzolite rocks into orthopyroxene-domains and orthopyroxene + plagioclase veins. The recognition of rhyolitic melts in the mantle provides direct evidence for element cycling through earth’s reser voirs, accommodated by dehydration and melting of crustal material, brought into the mantle by subduction, chemically modifying the mantle source, and ultimately returning to surface by arc magmatism.

Quartz-bearing rhyolitic melts in the Earth’s mantle

Bianchini G.
Secondo
;
2022

Abstract

The occurrence of rhyolite melts in the mantle has been predicted by high pressure-high temperature experiments but never observed in nature. Here we report natural quartz-bearing rhyolitic melt inclusions and interstitial glass within peridotite xenoliths. The oxygen isotope composition of quartz crystals shows the unequivocal continental crustal derivation of these melts, which approximate the minimum composition in the quartz-albite-orthoclase sys tem. Thermodynamic modelling suggests rhyolite was originated from partial melting of near-anhydrous garnet-bearing metapelites at temperatures ~1000 °C and interacted with peridotite at pressure ~1 GPa. Reaction of rhyolite with olivine converted lherzolite rocks into orthopyroxene-domains and orthopyroxene + plagioclase veins. The recognition of rhyolitic melts in the mantle provides direct evidence for element cycling through earth’s reser voirs, accommodated by dehydration and melting of crustal material, brought into the mantle by subduction, chemically modifying the mantle source, and ultimately returning to surface by arc magmatism.
2022
Dallai, L.; Bianchini, G.; Avanzinelli, R.; Deloule, E.; Natali, C.; Gaeta, M.; Cavallo, A.; Conticelli, S.
File in questo prodotto:
File Dimensione Formato  
Nature, Dallai 2022.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.84 MB
Formato Adobe PDF
1.84 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2500677
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact