Oxidative potential (OP) of particulate matter (PM) is gaining strong interest as a promising health exposure metric. This study investigated OP of a large set of PM10 and PM2.5 samples collected at five urban and background sites near Milan (Italy), one of the largest and most polluted urban areas in Europe, afflicted with high particle levels. OP responses from two acellular assays, based on ascorbic acid (AA) and dithiothreitol (DTT), were combined with atmospheric detailed composition to examine any possible feature in OP with PM size fraction, spatial and seasonal variations. A general association of volume-normalized OP with PM mass was found; this association may be related to the clear seasonality observed, whereby there was higher OP activity in wintertime at all investigated sites. Univariate correlations were used to link OP with the concentrations of the major chemical markers of vehicular and biomass burning emissions. Of the two assays, AA was particularly sensitive towards transition metals in coarse particles released from vehicular traffic. The results obtained confirm that the responses from the two assays and their relationship with atmospheric pollutants are assay- and location-dependent, and that their combination is therefore helpful to singling out the PM redox-active compounds driving its oxidative properties.

Seasonal and Spatial Variations of PM10 and PM2.5 Oxidative Potential in Five Urban and Rural Sites across Lombardia Region, Italy

Pietrogrande, Maria Chiara
Primo
Writing – Original Draft Preparation
;
Demaria, Giorgia
Investigation
;
2022

Abstract

Oxidative potential (OP) of particulate matter (PM) is gaining strong interest as a promising health exposure metric. This study investigated OP of a large set of PM10 and PM2.5 samples collected at five urban and background sites near Milan (Italy), one of the largest and most polluted urban areas in Europe, afflicted with high particle levels. OP responses from two acellular assays, based on ascorbic acid (AA) and dithiothreitol (DTT), were combined with atmospheric detailed composition to examine any possible feature in OP with PM size fraction, spatial and seasonal variations. A general association of volume-normalized OP with PM mass was found; this association may be related to the clear seasonality observed, whereby there was higher OP activity in wintertime at all investigated sites. Univariate correlations were used to link OP with the concentrations of the major chemical markers of vehicular and biomass burning emissions. Of the two assays, AA was particularly sensitive towards transition metals in coarse particles released from vehicular traffic. The results obtained confirm that the responses from the two assays and their relationship with atmospheric pollutants are assay- and location-dependent, and that their combination is therefore helpful to singling out the PM redox-active compounds driving its oxidative properties.
2022
Pietrogrande, Maria Chiara; Demaria, Giorgia; Colombi, Cristina; Cuccia, Eleonora; Dal Santo, Umberto
File in questo prodotto:
File Dimensione Formato  
published ijerph-19-07778.pdf

accesso aperto

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 792.79 kB
Formato Adobe PDF
792.79 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2499763
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact