In this paper, we study the geometry of GIT configurations of n ordered points on P1 both from the birational and the biregular viewpoint. In particular, we prove that any extremal ray of the Mori cone of effective curves of the quotient.P1/n== PGL.2/, taken with the symmetric polarization, is generated by a one dimensional boundary stratum of the moduli space. Furthermore, we develop some technical machinery that we use to compute the canonical divisor and the Hilbert polynomial of.P1/n== PGL.2/ in its natural embedding, and its automorphism group.
Birational geometry of moduli spaces of configurations of points on the line
Bolognesi M.
Primo
;Massarenti A.
Ultimo
2021
Abstract
In this paper, we study the geometry of GIT configurations of n ordered points on P1 both from the birational and the biregular viewpoint. In particular, we prove that any extremal ray of the Mori cone of effective curves of the quotient.P1/n== PGL.2/, taken with the symmetric polarization, is generated by a one dimensional boundary stratum of the moduli space. Furthermore, we develop some technical machinery that we use to compute the canonical divisor and the Hilbert polynomial of.P1/n== PGL.2/ in its natural embedding, and its automorphism group.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Alex_Michele_ANT.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.46 MB
Formato
Adobe PDF
|
1.46 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1702.00068_preprint.pdf
solo gestori archivio
Descrizione: versione pre-print
Tipologia:
Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
372.69 kB
Formato
Adobe PDF
|
372.69 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.