Understanding what determines range expansion or extinction is crucial to predict the success of biological invaders. We tackled this longstanding question from an unparalleled perspective using the failed expansions in Littorina saxatilis and investigated its present and past habitat suitability in Europe through Ecological Niche Modelling. This intertidal snail is a typically successful Atlantic colonizer and the earliest confirmed alien species in the Mediterranean Sea, where, however, it failed to thrive despite its high dispersal ability and adaptability. We explored the environmental constraints affecting its biogeography, identified potential glacial refugia in Europe that fuelled its post-glacial colonisations and tested whether the current gaps in its distribution are linked to local ecological features. Our results suggested that L. saxatilis is unlikely to be a glacial relict in the Mediterranean basin. Multiple Atlantic glacial refugia occurred in the Last Glacial Maximum, and abiotic environmental features such as salinity and water temperature have influenced the past and current distributions of this snail and limited its invasion of the Mediterranean Sea. The snail showed a significant overlap in geographic space and ecological niche with Carcinus maenas, the Atlantic predator, but distinct from Pachygrapsus marmoratus, the Mediterranean predator, further pointing to Atlantic-like habitat requirements for this species. Abiotic constrains during introduction rather than dispersal abilities have shaped the past and current range of L. saxatilis and help explaining why some invasions have not been successful. Our findings contribute to clarifying the processes constraining or facilitating shifts in species' distributions and biological invasions.

The rise and fall of an alien: why the successful colonizer Littorina saxatilis failed to invade the Mediterranean Sea

Giorgio Bertorelle;Francesca Raffini
Ultimo
2022

Abstract

Understanding what determines range expansion or extinction is crucial to predict the success of biological invaders. We tackled this longstanding question from an unparalleled perspective using the failed expansions in Littorina saxatilis and investigated its present and past habitat suitability in Europe through Ecological Niche Modelling. This intertidal snail is a typically successful Atlantic colonizer and the earliest confirmed alien species in the Mediterranean Sea, where, however, it failed to thrive despite its high dispersal ability and adaptability. We explored the environmental constraints affecting its biogeography, identified potential glacial refugia in Europe that fuelled its post-glacial colonisations and tested whether the current gaps in its distribution are linked to local ecological features. Our results suggested that L. saxatilis is unlikely to be a glacial relict in the Mediterranean basin. Multiple Atlantic glacial refugia occurred in the Last Glacial Maximum, and abiotic environmental features such as salinity and water temperature have influenced the past and current distributions of this snail and limited its invasion of the Mediterranean Sea. The snail showed a significant overlap in geographic space and ecological niche with Carcinus maenas, the Atlantic predator, but distinct from Pachygrapsus marmoratus, the Mediterranean predator, further pointing to Atlantic-like habitat requirements for this species. Abiotic constrains during introduction rather than dispersal abilities have shaped the past and current range of L. saxatilis and help explaining why some invasions have not been successful. Our findings contribute to clarifying the processes constraining or facilitating shifts in species' distributions and biological invasions.
2022
Bosso, Luciano; Smeraldo, Sonia; Russo, Danilo; Luisa Chiusano, Maria; Bertorelle, Giorgio; Johannesson, Kerstin; Butlin, Roger K.; Danovaro, Roberto; Raffini, Francesca
File in questo prodotto:
File Dimensione Formato  
s10530-022-02838-y.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.86 MB
Formato Adobe PDF
1.86 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2497736
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 38
social impact