In this paper, we consider the development of efficient numerical methods for linear transport equations with random parameters and under the diffusive scaling. We extend to the present case the bi-fidelity stochastic collocation method introduced in [33,50,51]. For the high-fidelity transport model, the asymptotic-preserving scheme [29] is used for each stochastic sample. We employ the simple two-velocity Goldstein-Taylor equation as low-fidelity model to accelerate the convergence of the uncertainty quantification process. The choice is motivated by the fact that both models, high fidelity and low fidelity, share the same diffusion limit. Speed-up is achieved by proper selection of the collocation points and relative approximation of the high-fidelity solution. Extensive numerical experiments are conducted to show the efficiency and accuracy of the proposed method, even in non diffusive regimes, with empirical error bound estimations as studied in [16].

A bi-fidelity stochastic collocation method for transport equations with diffusive scaling and multi-dimensional random inputs

Pareschi Lorenzo
Secondo
;
2022

Abstract

In this paper, we consider the development of efficient numerical methods for linear transport equations with random parameters and under the diffusive scaling. We extend to the present case the bi-fidelity stochastic collocation method introduced in [33,50,51]. For the high-fidelity transport model, the asymptotic-preserving scheme [29] is used for each stochastic sample. We employ the simple two-velocity Goldstein-Taylor equation as low-fidelity model to accelerate the convergence of the uncertainty quantification process. The choice is motivated by the fact that both models, high fidelity and low fidelity, share the same diffusion limit. Speed-up is achieved by proper selection of the collocation points and relative approximation of the high-fidelity solution. Extensive numerical experiments are conducted to show the efficiency and accuracy of the proposed method, even in non diffusive regimes, with empirical error bound estimations as studied in [16].
2022
Liu, Liu; Pareschi, Lorenzo; Zhu, Xueyu
File in questo prodotto:
File Dimensione Formato  
2107.09250.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 538.39 kB
Formato Adobe PDF
538.39 kB Adobe PDF Visualizza/Apri
1-s2.0-S002199912200314X-main.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 636.11 kB
Formato Adobe PDF
636.11 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2497138
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact