An innovative lyophilized dry powder formulation consisting of urea-crosslinked hyaluronic acid (HA-CL) and sodium ascorbyl phosphate (SAP) – LYO HA-CL – SAP- was prepared and characterized in vitro for physico-chemical and biological properties. The aim was to understand if LYO HA-CL – SAP could be used as adjuvant treatment for nasal inflammatory diseases. LYO HA-CL – SAP was suitable for nasal delivery and showed to be not toxic on human nasal septum carcinoma-derived cells (RPMI 2650 cells) at the investigated concentrations. It displayed porous, polygonal particles with unimodal, narrow size distribution, mean geometric diameter of 328.3 ± 27.5 µm, that is appropriate for nasal deposition with no respirable fraction and 88.7% of particles with aerodynamic diameter >14.1 µm. Additionally, the formulation showed wound healing ability on RPMI 2650 cells, and reduced interleukin-8 (IL-8) level in primary nasal epithelial cells pre-induced with lipopolysaccharide (LPS). Transport study across RPMI 2650 cells showed that HA-CL could act not only as carrier for SAP and active ingredient itself, but potentially also as mucoadhesive agent. In conclusion, these results suggest that HA-CL and SAP had anti-inflammatory activity and acted in combination to accelerate wound healing. Therefore, LYO HA-CL – SAP could be a potential adjuvant in nasal anti-inflammatory formulations.
In vitro characterization of physico-chemical properties, cytotoxicity, bioactivity of urea-crosslinked hyaluronic acid and sodium ascorbyl phosphate nasal powder formulation
Fallacara A.
Primo
;Busato L.;Manfredini S.Penultimo
;Traini D.
Ultimo
2019
Abstract
An innovative lyophilized dry powder formulation consisting of urea-crosslinked hyaluronic acid (HA-CL) and sodium ascorbyl phosphate (SAP) – LYO HA-CL – SAP- was prepared and characterized in vitro for physico-chemical and biological properties. The aim was to understand if LYO HA-CL – SAP could be used as adjuvant treatment for nasal inflammatory diseases. LYO HA-CL – SAP was suitable for nasal delivery and showed to be not toxic on human nasal septum carcinoma-derived cells (RPMI 2650 cells) at the investigated concentrations. It displayed porous, polygonal particles with unimodal, narrow size distribution, mean geometric diameter of 328.3 ± 27.5 µm, that is appropriate for nasal deposition with no respirable fraction and 88.7% of particles with aerodynamic diameter >14.1 µm. Additionally, the formulation showed wound healing ability on RPMI 2650 cells, and reduced interleukin-8 (IL-8) level in primary nasal epithelial cells pre-induced with lipopolysaccharide (LPS). Transport study across RPMI 2650 cells showed that HA-CL could act not only as carrier for SAP and active ingredient itself, but potentially also as mucoadhesive agent. In conclusion, these results suggest that HA-CL and SAP had anti-inflammatory activity and acted in combination to accelerate wound healing. Therefore, LYO HA-CL – SAP could be a potential adjuvant in nasal anti-inflammatory formulations.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0378517319300468-main.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
j.ijpharm.2019.01.012Accepted manuscript.pdf
accesso aperto
Descrizione: versione post-print
Tipologia:
Post-print
Licenza:
Creative commons
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.