Climate warming affects plant physiology through genetic adaptation and phenotypic plasticity, but little is known about how these mechanisms influence ecosystem processes. We used three ele- vation gradients and a reciprocal transplant experiment to show that temperature causes genetic change in the sedge Eriophorum vaginatum . We demonstrate that plants originating from warmer climate produce fewer secondary compounds, grow faster and accelerate carbon dioxide (CO2 ) release to the atmosphere. However, warmer climate also caused plasticity in E. vaginatum, inhibiting nitrogen metabolism, photosynthesis and growth and slowing CO2 release into the atmosphere. Genetic differentiation and plasticity in E. vaginatum thus had opposing effects on CO2 fluxes, suggesting that warming over many generations may buffer, or reverse, the short-term influence of this species over carbon cycle processes. Our findings demonstrate the capacity for plant evolution to impact ecosystem processes, and reveal a further mechanism through which plants will shape ecosystem responses to climate change.

Plastic and genetic responses of a common sedge to warming have contrasting effects on carbon cycle processes

Bragazza, Luca
Membro del Collaboration Group
;
2019

Abstract

Climate warming affects plant physiology through genetic adaptation and phenotypic plasticity, but little is known about how these mechanisms influence ecosystem processes. We used three ele- vation gradients and a reciprocal transplant experiment to show that temperature causes genetic change in the sedge Eriophorum vaginatum . We demonstrate that plants originating from warmer climate produce fewer secondary compounds, grow faster and accelerate carbon dioxide (CO2 ) release to the atmosphere. However, warmer climate also caused plasticity in E. vaginatum, inhibiting nitrogen metabolism, photosynthesis and growth and slowing CO2 release into the atmosphere. Genetic differentiation and plasticity in E. vaginatum thus had opposing effects on CO2 fluxes, suggesting that warming over many generations may buffer, or reverse, the short-term influence of this species over carbon cycle processes. Our findings demonstrate the capacity for plant evolution to impact ecosystem processes, and reveal a further mechanism through which plants will shape ecosystem responses to climate change.
2019
Walker, Tom W. N.; Weckwerth, Wolfram; Bragazza, Luca; Fragner, Lena; Forde, Brian G.; Ostle, Nicholas J.; Signarbieux, Constant; Sun, Xiaoliang; Ward, Susan E.; Bardgett, Richard D.
File in questo prodotto:
File Dimensione Formato  
Ecology Letters - 2018 - Walker - Plastic and genetic responses of a common sedge to warming have contrasting effects on.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 499 kB
Formato Adobe PDF
499 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2495884
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact