We present POSSIS, a time-dependent three-dimensional Monte Carlo code for modelling radiation transport in supernovae and kilonovae. The code incorporates wavelength- and time-dependent opacities, and predicts viewing-angle dependent spectra, light curves, and polarization for both idealized and hydrodynamical explosion models. We apply the code to a kilonova model with two distinct ejecta components, one including lanthanide elements with relatively high opacities and the other devoid of lanthanides and characterized by lower opacities. We find that a model with total ejecta mass Mej = 0.04 M⊙ and half-opening angle of the lanthanide-rich component Φ = 30◦ provides a good match to GW 170817/AT 2017gfo for orientations near the polar axis (i.e. for a system viewed close to face-on). We then show how crucial is the use of self-consistent multidimensional models in place of combining one-dimensional models to infer important parameters, such as the ejecta masses. We finally explore the impact of Mej and Φ on the synthetic observables and highlight how the relatively fast computation times of POSSIS make it well-suited to perform parameter-space studies and extract key properties of supernovae and kilonovae. Spectra calculated with POSSIS in this and future studies will be made publicly available.
POSSIS: predicting spectra, light curves, and polarization for multidimensional models of supernovae and kilonovae
Bulla M
2019
Abstract
We present POSSIS, a time-dependent three-dimensional Monte Carlo code for modelling radiation transport in supernovae and kilonovae. The code incorporates wavelength- and time-dependent opacities, and predicts viewing-angle dependent spectra, light curves, and polarization for both idealized and hydrodynamical explosion models. We apply the code to a kilonova model with two distinct ejecta components, one including lanthanide elements with relatively high opacities and the other devoid of lanthanides and characterized by lower opacities. We find that a model with total ejecta mass Mej = 0.04 M⊙ and half-opening angle of the lanthanide-rich component Φ = 30◦ provides a good match to GW 170817/AT 2017gfo for orientations near the polar axis (i.e. for a system viewed close to face-on). We then show how crucial is the use of self-consistent multidimensional models in place of combining one-dimensional models to infer important parameters, such as the ejecta masses. We finally explore the impact of Mej and Φ on the synthetic observables and highlight how the relatively fast computation times of POSSIS make it well-suited to perform parameter-space studies and extract key properties of supernovae and kilonovae. Spectra calculated with POSSIS in this and future studies will be made publicly available.I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.