We present high-cadence UV, optical, and near-infrared data on the luminous Type II-P supernova SN2017gmr from hours after discovery through the first 180 days. SN2017gmr does not show signs of narrow, high-ionization emission lines in the early optical spectra, yet the optical light-curve evolution suggests that an extra energy source from circumstellar medium (CSM) interaction must be present for at least 2 days after explosion. Modeling of the early light curve indicates a ∼500 Re progenitor radius, consistent with a rather compact red supergiant, and latetime luminosities indicate that up to 0.130±0.026 Me of 56Ni are present, if the light curve is solely powered by radioactive decay, although the 56Ni mass may be lower if CSM interaction contributes to the post-plateau luminosity. Prominent multipeaked emission lines of Hα and [O I] emerge after day 154, as a result of either an asymmetric explosion or asymmetries in the CSM. The lack of narrow lines within the first 2 days of explosion in the likely presence of CSM interaction may be an example of close, dense, asymmetric CSM that is quickly enveloped by the spherical supernova ejecta.
SN 2017gmr: An Energetic Type II-P Supernova with Asymmetries
Bulla M;
2019
Abstract
We present high-cadence UV, optical, and near-infrared data on the luminous Type II-P supernova SN2017gmr from hours after discovery through the first 180 days. SN2017gmr does not show signs of narrow, high-ionization emission lines in the early optical spectra, yet the optical light-curve evolution suggests that an extra energy source from circumstellar medium (CSM) interaction must be present for at least 2 days after explosion. Modeling of the early light curve indicates a ∼500 Re progenitor radius, consistent with a rather compact red supergiant, and latetime luminosities indicate that up to 0.130±0.026 Me of 56Ni are present, if the light curve is solely powered by radioactive decay, although the 56Ni mass may be lower if CSM interaction contributes to the post-plateau luminosity. Prominent multipeaked emission lines of Hα and [O I] emerge after day 154, as a result of either an asymmetric explosion or asymmetries in the CSM. The lack of narrow lines within the first 2 days of explosion in the likely presence of CSM interaction may be an example of close, dense, asymmetric CSM that is quickly enveloped by the spherical supernova ejecta.File | Dimensione | Formato | |
---|---|---|---|
Andrews_2019_ApJ_885_43.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
2.67 MB
Formato
Adobe PDF
|
2.67 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1907.01013.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
1.64 MB
Formato
Adobe PDF
|
1.64 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.