Purpose Governments are increasingly turning to artificial intelligence (AI) algorithmic systems to increase efficiency and effectiveness of public service delivery. While the diffusion of AI offers several desirable benefits, caution and attention should be posed to the accountability of AI algorithm decision-making systems in the public sector. The purpose of this paper is to establish the main challenges that an AI algorithm might bring about to public service accountability. In doing so, the paper also delineates future avenues of investigation for scholars. Design/methodology/approach This paper builds on previous literature and anecdotal cases of AI applications in public services, drawing on streams of literature from accounting, public administration and information technology ethics. Findings Based on previous literature, the paper highlights the accountability gaps that AI can bring about and the possible countermeasures. The introduction of AI algorithms in public services modifies the chain of responsibility. This distributed responsibility requires an accountability governance, together with technical solutions, to meet multiple accountabilities and close the accountability gaps. The paper also delineates a research agenda for accounting scholars to make accountability more "intelligent". Originality/value The findings of the paper shed new light and perspective on how public service accountability in AI should be considered and addressed. The results developed in this paper will stimulate scholars to explore, also from an interdisciplinary perspective, the issues public service organizations are facing to make AI algorithms accountable.

The loopholes of algorithmic public services: an "intelligent" accountability research agenda

Bracci, E
Primo
2023

Abstract

Purpose Governments are increasingly turning to artificial intelligence (AI) algorithmic systems to increase efficiency and effectiveness of public service delivery. While the diffusion of AI offers several desirable benefits, caution and attention should be posed to the accountability of AI algorithm decision-making systems in the public sector. The purpose of this paper is to establish the main challenges that an AI algorithm might bring about to public service accountability. In doing so, the paper also delineates future avenues of investigation for scholars. Design/methodology/approach This paper builds on previous literature and anecdotal cases of AI applications in public services, drawing on streams of literature from accounting, public administration and information technology ethics. Findings Based on previous literature, the paper highlights the accountability gaps that AI can bring about and the possible countermeasures. The introduction of AI algorithms in public services modifies the chain of responsibility. This distributed responsibility requires an accountability governance, together with technical solutions, to meet multiple accountabilities and close the accountability gaps. The paper also delineates a research agenda for accounting scholars to make accountability more "intelligent". Originality/value The findings of the paper shed new light and perspective on how public service accountability in AI should be considered and addressed. The results developed in this paper will stimulate scholars to explore, also from an interdisciplinary perspective, the issues public service organizations are facing to make AI algorithms accountable.
2023
Bracci, E
File in questo prodotto:
File Dimensione Formato  
10-1108_AAAJ-06-2022-5856.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 517.45 kB
Formato Adobe PDF
517.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2494709
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 12
social impact