Gamma-ray bursts (GRBs) are classified into long and short events. Long GRBs (LGRBs) are associated with the end states of very massive stars, while short GRBs (SGRBs) are linked to the merger of compact objects. GRB 200826A was a peculiar event, because by definition it was an SGRB, with a rest-frame duration of ∼0.5 s. However, this event was energetic and soft, which is consistent with LGRBs. The relatively low redshift (z = 0.7486) motivated a comprehensive, multiwavelength follow-up campaign to characterize its host, search for a possible associated supernova (SN), and thus understand the origin of this burst. To this aim we obtained a combination of deep near-infrared (NIR) and optical imaging together with spectroscopy. Our analysis reveals an optical and NIR bump in the light curve whose luminosity and evolution are in agreement with several SNe associated to LGRBs. Analysis of the prompt GRB shows that this event follows the Ep,i–Eiso relation found for LGRBs. The host galaxy is a low-mass star-forming galaxy, typical of LGRBs, but with one of the highest star formation rates, especially with respect to its mass ($mathrm{log}{M}_{* }/{M}_{odot }=8.6$, SFR ∼ 4.0 M⊙ yr−1). We conclude that GRB 200826A is a typical collapsar event in the low tail of the duration distribution of LGRBs. These findings support theoretical predictions that events produced by collapsars can be as short as 0.5 s in the host frame and further confirm that duration alone is not an efficient discriminator for the progenitor class of a GRB.
The Peculiar Short-duration GRB 200826A and Its Supernova
L. Amati;C. Guidorzi;
2022
Abstract
Gamma-ray bursts (GRBs) are classified into long and short events. Long GRBs (LGRBs) are associated with the end states of very massive stars, while short GRBs (SGRBs) are linked to the merger of compact objects. GRB 200826A was a peculiar event, because by definition it was an SGRB, with a rest-frame duration of ∼0.5 s. However, this event was energetic and soft, which is consistent with LGRBs. The relatively low redshift (z = 0.7486) motivated a comprehensive, multiwavelength follow-up campaign to characterize its host, search for a possible associated supernova (SN), and thus understand the origin of this burst. To this aim we obtained a combination of deep near-infrared (NIR) and optical imaging together with spectroscopy. Our analysis reveals an optical and NIR bump in the light curve whose luminosity and evolution are in agreement with several SNe associated to LGRBs. Analysis of the prompt GRB shows that this event follows the Ep,i–Eiso relation found for LGRBs. The host galaxy is a low-mass star-forming galaxy, typical of LGRBs, but with one of the highest star formation rates, especially with respect to its mass ($mathrm{log}{M}_{* }/{M}_{odot }=8.6$, SFR ∼ 4.0 M⊙ yr−1). We conclude that GRB 200826A is a typical collapsar event in the low tail of the duration distribution of LGRBs. These findings support theoretical predictions that events produced by collapsars can be as short as 0.5 s in the host frame and further confirm that duration alone is not an efficient discriminator for the progenitor class of a GRB.File | Dimensione | Formato | |
---|---|---|---|
rossi22_apj.pdf
accesso aperto
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
2.05 MB
Formato
Adobe PDF
|
2.05 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.