L’argomento principale di questo lavoro sono le funzioni a variazione limitata (BV) in spazi di Wiener astratti (un argomento di analisi infinito-dimensionale). Nella prima parte di questo lavoro, presentiamo alcuni risultati noti, e introduciamo i concetti di spazi di Wiener, di classi di Sobolev su spazi di Wiener, di funzioni BV (e insiemi di perimetro finito) in spazi di Wiener, e di funzioni BV in sottoinsiemi convessi di Spazi di Wiener (seguendo la definizione in V. I. Bogachev, A. Y. Pilipenko, A. V. Shaposhnikov, “Sobolev Functions on Infinite-dimensional domains”, J. Math. Anal. Appl., 2014); inoltre, introduciamo la teoria delle tracce su sottoinsiemi di uno spazio di Wiener( seguendo P. Celada, A. Lunardi, “Traces of Sobolev functions on regular surfaces in infinite dimensions”, J. Funct. Anal., 2014), e il concetto di convergenza di Mosco. Nella seconda parte presentiamo alcuni risultati originali. Nel capitolo 6, consideriamo un sottoinsieme O di uno spazio di Wiener che soddisfa a una condizione di regolarità, e proviamo che una funzione in W^{1,2} (O) ha traccia nulla se e solo se è il limite di una sequenza di funzioni con supporto contenuto in O. Il capitolo principale è il 7, che è dedicato all'estensione all'ambito degli spazi di Wiener di un risultato dato nella sezione 8 di (V. Barbu, M. Röckner, “Stochastic variational inequalities and applications to the total variation flow perturbed by linear multiplicative noise”, Arch. Ration. Mech. Anal., 2013): se O è un insieme convesso limitato con frontiera regolare in R^{d} e L è l'operatore di Laplace in O con condizione al bordo di Dirichlet nulla, allora il risolvente normalizzato di L è contrattivo nel senso L^1 rispetto al gradiente. Estendiamo questo risultato al caso di L operatore di Ornstein-Uhlenbeck in O con condizione al bordo di Dirichlet nulla, con misura gaussiana (usando i risultati del Capitolo 6): in questo caso O deve soddisfare una condizione (che chiamiamo convessità Gaussiana) che nel caso gaussiano prende il posto della convessità. Inoltre, estendiamo il risultato anche al caso di: L operatore di Laplace in un insieme aperto e convesso O con condizione al bordo di Neumann nulla, con misura di Lebesgue; L operatore in un insieme aperto e convesso O con condizione al bordo di Neumann nulla, con misura gaussiana. Nell'ultima parte del Capitolo 7, usiamo i precedenti risultati per dare una definizione alternativa di funzione BV in O (nel caso L^2(O) ). Nel Capitolo 8, sia X l'insieme delle funzioni continue in R^d su [ 0,1 ] con punti di partenza nell’origine fornito della misura indotta dal moto browniano con punto di partenza nell’origine; è uno spazio di Wiener. Per ogni A sottoinsieme di X, definiamo Ξ_A, insieme delle funzioni in X con immagine in A. In (M. Hino, H. Uchida, “Reflecting Ornstein–Uhlenbeck processes on pinned path spaces”, Res. Inst. Math. Sci. (RIMS), 2008) viene dimostrato che, se d ≥ 2 e A è un insieme aperto in R^d che soddisfa una condizione di uniforme palla esterna, allora Ξ_A ha perimetro finito nel senso della misura gaussiana. Presentiamo una condizione più debole su A (in dimensione sufficientemente grande) tale che Ξ_A ha perimetro finito: in particolare, A può essere il complementare di un cono convesso illimitato simmetrico.
The main thread of this work is the bounded variation (BV) functions in abstract Wiener spaces (a topic in infinite-dimensional analysis). In the first Part of this work, we present some known results, and we introduce the concepts of Wiener space, of Sobolev space in Wiener spaces, of BV functions (and finite perimeter sets) in Wiener spaces, and of BV functions in convex sets of Wiener spaces (by following the definition in V. I. Bogachev, A. Y. Pilipenko, A. V. Shaposhnikov, “Sobolev Functions on Infinite-dimensional domains”, J. Math. Anal. Appl., 2014); moreover, we introduce the trace theory on subsets of a Wiener space (by following P. Celada, A. Lunardi, “Traces of Sobolev functions on regular surfaces in infinite dimensions”, J. Funct. Anal., 2014), and the concept of Mosco convergence. In the second Part we present some new results. In Chapter 6, we consider a subset O of a Wiener space which satisfies a regularity condition, and we prove that a function in W^{1,2}(O) has null trace if and only if it is the limit of a sequence of functions with support contained in O. The main chapter is Chapter 7, which is devoted to the extension in the Wiener spaces setting of a result given in the section 8 of (V. Barbu, M. Röckner, “Stochastic variational inequalities and applications to the total variation flow perturbed by linear multiplicative noise”, Arch. Ration. Mech. Anal., 2013): if O is a convex bounded set with regular boundary in R^{d} and L is the Laplace operator in O with null Dirichlet boundary condition, then the normalized resolvent of L is contractive in sense L^1 respect to the gradient. We extend this result to the case of L Ornstein-Uhlenbeck operator in O with null Dirichlet boundary condition, with Gaussian measure (by using the results of Chapter 6): in this case O must satisfy a condition (which we call Gaussian convexity) which takes the place of the convexity in the Gaussian setting. Moreover, we extend the result also to the case of: L Laplace operator in an open convex O with null Neumann boundary condition, with Lebesgue measure; L Ornstein-Uhlenbeck operator in an open convex O with null Neumann boundary condition, with Gaussian measure. In the last part of Chapter 7, we use the preceding results to give an alternative definition of BV function (in the case L^2(O)). In Chapter 8, let X the set of continuous functions on [0,1] with starting point 0, provided with the measure induced by the Brownian motion with starting point 0; it is a Wiener space. For every A subset of X, we define Ξ_A, set of functions in X with image in A. In (M. Hino, H. Uchida, “Reflecting Ornstein–Uhlenbeck processes on pinned path spaces”, Res. Inst. Math. Sci. (RIMS), 2008) it is proved that, if d ≥ 2 and A is an open subset of R^d which satisfies an uniform outer ball condition then Ξ_A has finite perimeter in the sense of Gaussian measure. We present a weaker condition on A (in dimension sufficiently great) such that Ξ_A has finite perimeter: in particular, A can be the complement of a convex unbounded symmetric cone.
Sobolev classes and bounded variation functions on domains of Wiener spaces, and applications.
MENEGATTI, GIORGIO
2018
Abstract
L’argomento principale di questo lavoro sono le funzioni a variazione limitata (BV) in spazi di Wiener astratti (un argomento di analisi infinito-dimensionale). Nella prima parte di questo lavoro, presentiamo alcuni risultati noti, e introduciamo i concetti di spazi di Wiener, di classi di Sobolev su spazi di Wiener, di funzioni BV (e insiemi di perimetro finito) in spazi di Wiener, e di funzioni BV in sottoinsiemi convessi di Spazi di Wiener (seguendo la definizione in V. I. Bogachev, A. Y. Pilipenko, A. V. Shaposhnikov, “Sobolev Functions on Infinite-dimensional domains”, J. Math. Anal. Appl., 2014); inoltre, introduciamo la teoria delle tracce su sottoinsiemi di uno spazio di Wiener( seguendo P. Celada, A. Lunardi, “Traces of Sobolev functions on regular surfaces in infinite dimensions”, J. Funct. Anal., 2014), e il concetto di convergenza di Mosco. Nella seconda parte presentiamo alcuni risultati originali. Nel capitolo 6, consideriamo un sottoinsieme O di uno spazio di Wiener che soddisfa a una condizione di regolarità, e proviamo che una funzione in W^{1,2} (O) ha traccia nulla se e solo se è il limite di una sequenza di funzioni con supporto contenuto in O. Il capitolo principale è il 7, che è dedicato all'estensione all'ambito degli spazi di Wiener di un risultato dato nella sezione 8 di (V. Barbu, M. Röckner, “Stochastic variational inequalities and applications to the total variation flow perturbed by linear multiplicative noise”, Arch. Ration. Mech. Anal., 2013): se O è un insieme convesso limitato con frontiera regolare in R^{d} e L è l'operatore di Laplace in O con condizione al bordo di Dirichlet nulla, allora il risolvente normalizzato di L è contrattivo nel senso L^1 rispetto al gradiente. Estendiamo questo risultato al caso di L operatore di Ornstein-Uhlenbeck in O con condizione al bordo di Dirichlet nulla, con misura gaussiana (usando i risultati del Capitolo 6): in questo caso O deve soddisfare una condizione (che chiamiamo convessità Gaussiana) che nel caso gaussiano prende il posto della convessità. Inoltre, estendiamo il risultato anche al caso di: L operatore di Laplace in un insieme aperto e convesso O con condizione al bordo di Neumann nulla, con misura di Lebesgue; L operatore in un insieme aperto e convesso O con condizione al bordo di Neumann nulla, con misura gaussiana. Nell'ultima parte del Capitolo 7, usiamo i precedenti risultati per dare una definizione alternativa di funzione BV in O (nel caso L^2(O) ). Nel Capitolo 8, sia X l'insieme delle funzioni continue in R^d su [ 0,1 ] con punti di partenza nell’origine fornito della misura indotta dal moto browniano con punto di partenza nell’origine; è uno spazio di Wiener. Per ogni A sottoinsieme di X, definiamo Ξ_A, insieme delle funzioni in X con immagine in A. In (M. Hino, H. Uchida, “Reflecting Ornstein–Uhlenbeck processes on pinned path spaces”, Res. Inst. Math. Sci. (RIMS), 2008) viene dimostrato che, se d ≥ 2 e A è un insieme aperto in R^d che soddisfa una condizione di uniforme palla esterna, allora Ξ_A ha perimetro finito nel senso della misura gaussiana. Presentiamo una condizione più debole su A (in dimensione sufficientemente grande) tale che Ξ_A ha perimetro finito: in particolare, A può essere il complementare di un cono convesso illimitato simmetrico.File | Dimensione | Formato | |
---|---|---|---|
tesi_Febbraio_2018.pdf
accesso aperto
Descrizione: tesi_Febbraio_2018
Tipologia:
Tesi di dottorato
Dimensione
945.41 kB
Formato
Adobe PDF
|
945.41 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.