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Introduction

In this work, we present some new results: their main thread is the bounded variation functions
in abstract Wiener space (which we will usually call Wiener space).

Here, by Wiener space, we mean a separable Banach space with a centered non-degenerate
Gaussian measure y: the canonical example is the classical Wiener measure on C([0, 1]), which
represents the standard Brownian motion (see e.g. [14] for more information); a Wiener space
admits a particular subspace H, the Cameron-Martin space, such that, for every & € H, the measure
defined as 7, := y(- — h) is absolutely continuous with respect to y; on H is well defined an inner
product (-,-),; which gives on H an Hilbert structure. We can define the spaces L?, the Sobolev
spaces W7 with the H-derivatives d, and a H-gradient Vy; by d; we denote the formal adjoint
of the h-derivative dj, and, on W7, it is verified an integration by parts formula

/ ohfgdy—— / farg dy.
X X

By functions of bounded variation (BV), we mean a function f on (X,y) which admits a vector
measure Dy f such that an integration by parts formula is verified for every g regular

| roigar=— [ gaipyrn),

(we refer to [8, 7] and al.); equivalently, a function f is in BV if there exists a sequence of functions
foeWhlst f, — finL! and

limsup/ IV fulg dy < .
n—+teo JX

A set A C X is said of finite perimeter if its characteristic function 114 is BV.

The topic of BV (bounded variation) functions in Wiener space has been studied for instance
in (42, 45,7, 8, 18, 17, 51]; we widely use the survey [54].

There are different possible definition of bounded variation on subsets of X; in this work we
will follow a definition of functions of bounded variation on an open convex O C X for X Wiener
space, given in [17].

In this work, we also deal with the problem of defining Sobolev spaces on open subsets O of
Wiener spaces: following for instance [26], [S1], the main idea is to define the weak gradients on
Lipschitz functions, and then to define W' (0) as the completion of the set of Lipschitz functions
with respect to a norm |- [|yy1,(¢). In the case of O convex, an equivalent definition is that f is in

WP(0) if it is absolutely continuous along the lines (almost everywhere) and if the weak gradient
defined in this way is L”. The proof of this fact is in [14] for W1’2(0); in this work (Proposition
3.2.23, Subsection 3.3.2,) the proof is reconstructed for W' with p generic.
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2 INTRODUCTION

A greater problem is to define WO1 ?(0), the functions with zero trace on O: we define a

function in WOI"[7 (O) as the limit of a sequence of regular functions which are null out of O. In
[26], a particular kind of sets allows to define the trace as an operator from W'?(0) to L?(90)
(for a measure on the boundary called Feyel-de La Pradelle), so in this setting a possible definition
of WO1 P(0) is the space of functions with null trace on the boundary; in this work (Chapter 6,
Theorem 6.2.2) we prove, under certain conditions stronger than that of [26], that for p = 2 the
two definitions are equivalent.

The most of Chapter 7 is devoted to the extension in the Wiener spaces setting of a result
(due to H. Brezis) given in the section 8 of the paper [12] by Barbu and Rockner. about the
resolvent of the Laplacian in finite dimension: if O is a convex bounded set with regular boundary
in X = R and L is the Laplace operator in O with null Dirichlet boundary conditions, if & > 0,
yE WOI’1 (0,2 NL*0,2%) (£ is the Lebesgue measure), and u := (I — oL)~'y, then

(0.0.1) /]Vu(x)|dx§/|Vy(x)|dx.
o o

We give some extensions. (0.0.1) is true also if L is the Laplace operator in O with null
Neumann boundary condition (Section7.4) and y € W1(0,.29) N L*(0,.£%). Moreover, if we
replace the Lebesgue measure with a Gaussian measure ¥ (in R or in a infinite dimensional space
X) and we substitute to L the Ornstein-Uhlenbeck operator (which takes the place of Laplace
operator in Wiener spaces in many respects), we can find an equivalent of (0.0.1) both for null
Dirichlet boundary conditions, and for null Neumann boundary conditions.

For Ornstein-Uhlenbeck operator with null Dirichlet boundary conditions (Section 7.2), we
set a particular condition on O (Chapter 6), which we use to get Theorem 6.2.2 on WO1 ’2(0);
moreover, we impose a condition, that we could name Gaussian convexity; under this hypothesis,
fory e Wol’p(O) NL%(0) for some p > 1, and u := (I — 6L)~'y we have Theorem 7.3.7

0.0.2) / Vigu] dy < / IVy| dy.
o o

For Ornstein-Uhlenbeck operator with null Neumann boundary conditions (Section 7.4), we
can impose that O is convex, and we obtain Theorem 7.4.7 for every y € W1(0) N L*(0) the
inequality (0.0.2).

We make use of this last result in Section 7.5; in that section, we want to find a characterization
of bounded variation function on O which is equivalent to that in [17]; we get Theorem 7.5.11 that,
under the hypothesis that y € L?(0), it is BV if and only if (for J5 := (I — 6L)™")

limsup/ \Vids(y)|g dy < 4o
c—=0 JO
and if and only if there exists a sequence of functions f, € Wl s.t. f, — fin L! and
1imsup/ Vi fulu dy < oo
n—+e JO

to prove this result, we need the equivalent definitions of W' (0) given in Proposition 3.2.23.

In Chapter 8, we consider X := C([0,1],R¢) and X, := C,([0,1],R?) (continuous functions
with starting point in 0) with the measure given by the Brownian motion with starting point in
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—

0 € R?, hence it is represented by a Gaussian measure. For every Q C X, we define By i={we
Xi|o(r) e QVr € [0,1]}.

In ([46], Thm. 5.1) it is proved that, if d > 2 and Q C R? is an open set which satisfies a
uniform outer ball condition then E% has finite perimeter in the sense of Gaussian measure.

In Chapter 8 we give a weaker condition on Q (in dimension sufficiently large) such that Eq
has finite perimeter: in particular,  can be the complement of a symmetric cone.

In the first part of this work, we present the known results which are used to prove the above
described results.

In Chapter 1, we recall some well-known notions about operators, semigroups and forms, and
notions of measure theory, in particular probability (with a great attention for Markov process,
which will be used in Chapter 8).

In Chapter 2, we recall a great part of the theory of Gaussian measures, which allows us to
define Wiener spaces. In Chapter 3 we deal with derivatives and Sobolev spaces in Wiener spaces,
and we also introduce the Ornstein-Uhlenbeck semigroup.

The topic of Sobolev spaces in Wiener spaces is reserved for Chapter 3: this Chapter contains
the treatment about W!”(0), and in particular an assertion (Proposition 3.2.23): we present a
more general extension of it; we also introduce W2?(X) and the Ornstein-Uhlenbeck semigroup
and operator; it is also recalled the theory of traces contained in [26].

In Chapter 4 we introduce the topic of BV functions, as stated above.

In Chapter 5 we recall a particular kind of convergence of forms, introduced by U. Mosco in
[56], which implies the convergence of the semigroups and of the associated resolvents: we use it
extensively in Chapter 7.

In the second part of the thesis (Chapters 6, 7, 8) we present our results, as described above.

In the Appendix we recall several notations and definitions used through the above chapters,
like: Banach spaces and complexifications (used in Chapter 1), holomorphic functions, convo-
lutions (used especially in the proof of Proposition 3.2.23), a version of Riesz-Thorin theorem,
absolute continuity, Banach-Alaoglu theorem; particularly important is the Holderianity of the
solution of elliptic problems, used in Chapter 7.

I want to especially thank Michael Rockner, who supervised my work when I was visiting
the the University of Bielefeld in fall 2016 and proposed the problem of the contraction of the
gradients which I afford in Chapter 7.
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BASIC NOTATIONS

Basic notations

argument of the complex number z.

identity function.

complement of a set A

positive part of a function f.

negative part of a function f.

{x € X|G(x) =k}, for sets X, Y a function f: X —Y,andk €Y.
{x € X|G(x) € Ak}, for sets X,Y a function f: X —Y,andA CY.
identity.

closure of a set A.

interior of a set A.

diameter of a metric space.

set of continuous functions from the topological space X in R.
space of continuous bounded functions from the metric space X
in R.

set of continuous functions from the topological space X in the
topological space Y.

set of continuous bounded functions from the metric space X in
the metric space Y.

space of continuous functions with compact support from the
metric space X in R.

subspace of C.(R?) of functions differentiable, with gradient con-
tinuous in R¥.

partial derivative along i.

k—th partial derivative (if a basis is fixed).

inverse image of a set A with respect to a function f.

R =RU{—o0,+co}.

algebraic dual of the Banach space X, i.e. the set of linear func-
tions/: X — R.

topological dual of the Banach space X, i.e. the set of continuous
linear functions / : X — R.

given the metric spaces X,Y, space of bounded linear function
fromX inY.

given the metric spaces X,Y, space of bounded linear function
from X in £(X,Y).

the support of a Y valued function (Y vector space) on a topolog-
ical space X, i.e. f~1(Y\0).

Lebesgue measure on R,

L space with respect to .Z’¢ on O subset of RY for p € [1,4-o0].
the set of Y-valued Lipschitz functions on X (where X and Y are
metric spaces).

the set of Y-valued Lipschitz bounded functions on X (where X
and Y are metric spaces).

Lip(X,R).

Lip,(X,R).
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CHAPTER 1

Notations and miscellaneous of basics facts

In this Chapter we recall some basics notions.

The Section 1.1 recalls some standard notions about operators and semigroups, which is used
in Section 3.4 to define the Ornstein-Uhlenbeck operator; moreover, we introduce Proposition
1.1.21, which will be used in Chapter 8.

In Section 1.2 we recall standard notions of measure theory; in particular, Hausdorff measures
are introduced. Moreover, we present the concept of vector measure, in particular a technical
result about their total variation (Lemma 1.2.36): they will be used in Chapters 4 and 7.

In Section 1.3, some notions of probability are introduced, with a great attention for Markov
processes, and their link with symmetric forms; this topics are used in Subsection 1.3.4 to explain
properties of d-dimensional Brownian motion (as a Markov process), and absorbing Brownian
motion; in Subsection 1.3.5 it is introduced the Bessel process; these topics will be used in Chapter
8.

1.1. Closable operators, resolvents, semigroups and symmetric forms

1.1.1. Operators, resolvents, semigroups and generators. For this subsection we refer to
[37], [11], [27] and [41].

We recall the definition of operator, of closable operator, and of the closure of a closable
operator.

In this section we deal with real and complex Banach spaces; in this work, by Banach space
we mean a real Banach space.

DEFINITION 1.1.1. Let E, F be Banach spaces (both real or both complex); a (unbounded)
operator is a couple (D(L),L) where D(L) is a subspace of E and L is a linear operator L : D(L) —
F; D(L) is said domain of the operator.

If E = F, we say that L is an operator on E.

We say that L is closed if its graph is closed in E X F.

A bounded operator L on E is said contractive, or a contraction, if ||L(x)||y < [lx| x.
For x € D(L), sometimes we will write Lx instead of L(x).

DEFINITION 1.1.2. Let E, F be (both real or both complex) Banach spaces and let L : D(L) C
E — F be a linear operator. L is called closable (in E) if there exists a linear operator L : D(L) C
E — F whose graph is the closure of the graph of Lin E x F.

REMARK 1.1.3. An operator L is closable if: for every sequence {x,},eny C D(L) which
satisfies lim,,_yo X, = 0, if lim,,_y0. LX, = z then z = 0.

If L is closable, the domain of the closure L of L is the set
D(L) = {x € E: 3(x,) CD(L), limx, =x, Lx, converges in F}
n—soo

9



10 1. NOTATIONS AND MISCELLANEOUS OF BASICS FACTS

and for x € D(L) we have
Lx = lim Lx,,,

n—yo0

for every sequence (x,) C D(L) such that lim, ,.x, = x. By the closability of L, we have that
lim,,_,. Lx;, is independent of the sequence (x,). Since L is a closed operator, its domain is a
Banach space with the graph norm x — ||x||g + ||Lx||r.

A linear operator L on X is said bounded if D(L) = X and

|| Lx]|
L] :==sup "% = sup [|L|y < oe;
rex Ixllx x€X,||x|[x <1

the set of bounded operator on X will be denoted with £(X). in this setting, ||| will be called
operator norm, and we denote it also with [|-|| ;).

We recall the concept of complexification of a real Banach space (see Appendix).

If X is a (complex or real) Banach space, then £(X) is a (complex or real) Banach space with

the norm |[-[| ; x).-

REMARK 1.1.4. Let X be a (real) Banach space, and L be an operator; we can define L¢ as
operator on the complexifixation X¢ as

D(Lc) = {X] +1.x2 S XC|X1,X2 € D(L)}’

Le(x1 +ix) = Lxy +ilxy,

we have that L¢ is a linear operator; we have that if L is closed (closable, bounded) then L¢ is
closed (closable, bounded).

Now we will give some notions of spectral theory; we will do it both for real and complex
Banach spaces.

DEFINITION 1.1.5. Let (D(L),L) be an operator on a real (or complex) Banach space X, and
A € R (or A € C); an operator R € £(X) is said a resolvent operator for (L,A) if it is the inverse
of AI — L as a function; which means, R(X) = D(L) and

(AI—L)oR=1

on X, and
Ro(AI—-L)=1
on D(L).
We have that there exists at most one of this operator; if there exists, we call it also the

resolvent, and we denote it by (AT — L)~ or R(A,L).
The resolvent set p(L) and the spectrum o (L) of L are defined by

(1.1.1) p(L)={A eKFAI-L) " € £(X)}, o(L) =K\p(L).

where K=R or K=C.

The numbers A € (L) such that A7 — L is not injective are the eigenvalues, and the vectors
x € D(L) such that Lx = Ax are the eigenvectors (or eigenfunctions, when X is a function space).
The set 0,(L) whose elements are all the eigenvalues of L is the point spectrum.
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If A € p(L), by definition we have
(Ax—Lx)oR(A,L)(x) =x
we have also
R(A,L)(Ax—Lx) =x

for every x € D(L).

We have that, if the resolvent set p(L) is not empty, then L is a closed operator.

We have the following equality, known as the resolvent identity
(11.2) R(A,L) = R(i,L) = (1 — A)R(A,L)R(u, L), ¥ A, p € p(L).

If X is a (real) Banach space and L is an operator, p(L) = p(Lc) NR, and, for A € p(L) the
operator R(A, L) can be extended to X¢ as operator and it is R(A,Lc) (see e.g. [11]).
For the next definition see e.g. ([52], Def. 1.1.4).

DEFINITION 1.1.6. A family {G} },-¢ C £(X) is said strongly continuous contraction resol-
vent if:
i) limy_,o+ AGyx = x for every x € X;

i) AG, is contractive for every 1;
i) AGy, —uGy =(u—2A)G, Gy, VA, u>0.

A semigroup of operators on a (real or complex) Banach space X is a family { 7’,},6[07+N) (we
will write also simply 7;) of linear bounded operators 7; : X — X, s.t. T is the identity and for
every t,s > 0,

Ti1s(x) = Ti(Ti(x))

for every x € X. A semigroup 7; on X is said strongly continuous if, for every x € X
lim || T;x — x||y, = O;
fim |7 x|
a semigroup 7; on X is said contractive (or contraction semigroup) if, forevery x € X, ¢t >0
1Texllx < el -

DEFINITION 1.1.7. The infinitesimal generator (or, shortly, the generator) of the strongly
continuous semigroup {7; },>¢ is the operator defined by

T, —

1 . L—1
x}, Lx = lim X.

t—0t  t

D(L):{xEX:EI lim

t—0t t

We have that, if (D(L),L) is the generator of a strongly continuous semigroup 7;, then D(L)
is dense in X, and 7;(D(L)) C D(L) for every ¢t > 0. One operator can be the generator of at most
one semigroup.

REMARK 1.1.8. If X is a Banach space and 7; is an semigroup on X, then 7; can clearly be
extended to a semigroup T,(C on the complexification X¢ as operator, if 7; is strongly continuous
then 7,C is strongly continuous, if the generator of 7; is L then the generator of T, is Lc.

We recall that if H is a Hilbert space then for x,y € H we have

e iyl = A/ X3 + s

so if 7; is a contractive semigroup on H, then its extension T,* is contractive on Hc.
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A self-adjoint operator L on a (real or complex) Hilbert space H is said accretive if
R((Lh,h)y) >0

for every h € D(L).
An operator L is said dissipative if —L is accretive.
By the fact that | - |4 = (-,-), the following Lemma follows immediately.

LEMMA 1.1.9. A self-adjoint operator L on H is accretive iff, for every A >0, h € D(A)
|Ah+Lh|y > Alhly.
We have this result.

PROPOSITION 1.1.10. If L is an accretive operator, then A € p(L) for every A < 0. If L is
dissipative, then A € p(L) for every A > 0.

An accretive operator L is said m-accretive if, I + L is surjective (here m- stands for maximal).

Clearly, if H is a real Hilbert space and L is an operator on H, we have that if L is accretive
(m-accretive) then L¢ is accretive (m-accretive).

We have this Proposition (see e.g. [11], Thm. 3.1).

PROPOSITION 1.1.11. (Lumer-Phillips theorem) Let H be a (real or complex) Hilbert space
and L an operator on H; then L is the generator of a strongly continuous contractive semigroup
on H iff —L is m-accretive.

In particular, if L generates a strongly continuous contractive semigroup, then L admits for
every A > 0 aresolvent G, := R(A,L), and it is a strongly continuous contraction resolvent (see
e.g. [52] Prop. 1.1.10); we call G, the strongly continuous contraction resolvent of L.

If 6 € [0,+7), then in C we can define the set £y := {z € C||argz| < 0}.
We introduce the concepts of bounded holomorphic semigroup (we follow [57]).

DEFINITION 1.1.12. Let 6 € (—%,4+7). Let X be a complex Banach space (so £(X) is a
complex Banach space). A strongly continuous semigroup {T,}te((), +oo) ON X is called a bounded
holomorphic semigroup on the sector Xg if it can be extended to a holomorphic function {7} }.cx,

on Xg s.t., for every 0 < 8y < 6, {T:}cy,, is uniformly bounded on £(X).

1.1.2. Forms and associated operators and semigroups. In the sequel of this subsection, 7
denotes the conjugate of z in C.

We recall that a symmetric form on a real (sesquilinear form on a complex) Hilbert space H is
a couple (D(a),a) where D(a), said domain, is a dense linear subspace of H and a is a function

D(a) x D(a) — K for K=R (or K= C) s.t. a(hy,hy) = a(hy,h;) and
a(0thy + Bhy, h3) = aa(hi, h3) + Ba(ha, h3)
for every hy,hy,hs € D(a) and o, B € K; we have that on D(a) we can define the norm |- |4, as

|h|q, :=r/a(h,h)+ (h,h)

for every h € D(a); if D(a) endowed with the norm |- |,, is a Banach space then a is said closed.
If there exists M s.t.
‘a(hlahZ)’ < M‘hl ‘a| ‘hZ‘al )

for every hy,hy € D(a), then we say that a is continuous.
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If
R(a(h,h)) >0
for every h € H.

REMARK 1.1.13. If H is a real Hilbert space and (D(a),a) is a symmetric form on H, then
there exists an extension (D(ac),ac) on the complexification He: D(ac) := D(a) +iD(a),

a@(hl +1ihy, hs + ih4) = a(hl,h3) +ia(h2,h3) — ia(hl,h4) +a(h2,h4);
it is sesquilinear, and if a is closed (or continuous) then ac is closed (or continuous).

We have this result (see e.g. [48],VI, Theo 2.1), due to K. Friedrichs.

PROPOSITION 1.1.14. Given a closed symmetric form (D(a),a) on H, there exists exactly one
linear operator A on H associated to a s.t. —A is an m-accretive operator, D(A) C D(a), and, for
every f € D(A),g € D(a), we have

a(fag) = _<Af7g>H'

DEFINITION 1.1.15. Given a closed symmetric form (D(a),a) on H, the operator A on H
introduced in Proposition 1.1.14 is said associated to a.

By what we said, given a continuous closed symmetric form (D(a),a) on H, and the operator L
associated to it, —L is m-accretive, so by Lumer-Phillips theorem L generates a strongly continuous
contractive semigroup 7;, and G, := R(A,L) is a strongly continuous contraction resolvent.

We call the above defined 7; the strongly continuous semigroup associated to a, and G, the
strongly continuous contraction resolvent associated to a.

REMARK 1.1.16. Let H be a real Hilbert space, a a closed symmetric form on H and A the
operator associated to a; then, on the complexification H¢ the operator associated to the extension
ac is the extension Ac.

DEFINITION 1.1.17. Let H be a (real or complex) Hilbert space; a semigroup 7; on H is said
symmetric or self-adjoint if , for every t > 0, hy,hp € H

(Thy, ha)y = (hi, Tiha) .-

We have that a strongly continuous semigroup is self-adjoint if and only if its generator is
self-adjoint.

We have that if a closed symmetric form a Let 7; be a self-adjoint strongly continuous con-
tractive semigroup on H; for every ¢t > 0 we define the form with domain H

a (i, ha) == 17" (hy — Tihy, ha)
for hy,hy € H; we have that (H,a"")) is a closed symmetric form. We define a form « in this way
D(a) := {h € H|lim|a") (h,h)| < oo}
t—0
a(hi,hy) :=1lima") (hy,hy)
t—0
for hy,hy € D(a). This is a closed symmetric form.

DEFINITION 1.1.18. The form (a,D(a)) defined above is the form associated to the semigroup
T;.
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We have this result ([57], Thm. 1.52).

PROPOSITION 1.1.19. IfH is a complex Hilbert space, and a is a continuous closed sesquilin-
ear form on H, if T, is the strongly continuous semigroup associated to a, then T; is bounded
holomorphic.

1.1.3. Kernel of a semigroup. Let Q@ C R? be an open set; T; be a semigroup on L*(Q, . £4)
(it is a Hilbert space); following ([57], Sec. 6.1), if there exists a Lebesgue-measurable function
p: QX QxR = Rs.t.: for some C, |p(x,y,1)| < Ct=4/2 for every x,y € Q, t > 0, and, for every

(for .Z“-almost every x € Q), then we say that p is the kernel of T;.

REMARK 1.1.20. By the properties of the semigroups we have, for all 0 < s < ¢,

/Q FOIPCont) dy =T, F(x) = Ty (Tof)(x) =

/ plx,yt /f p(v,z,s) dz) dy

(1.1.3) :LLf(Z)p(x,y,t—S)p(y,z,S) dz dy

for .#4-almost every x, for every f € L*(Q,.£“); from this we can deduce, for every B bounded

Borel subset of Q
/ plx,y,t)dy = // p(x,y,t —=s)p(y,z,s) dz dy

Let X be the complexification of L2(Q,.Z“); let T; be a semigroup on X, if there exists p :
Qx QxR — Cs.t., forevery f € X (writing f = f +if> where fi, f» € L*(Q,.24))

(1.14) T f(x) = /Q F10)Py.t) da+i / £O)p(ey.t) dx

(for Z?-almost every x € Q), then we say that p is called kernel of T,
Now, if 7; on L*(Q, %) has kernel p, we have that its extension Tt‘C on X has kernel p.
About kernel of semigroups associated to forms, we have this result (see e.g. [S7] Thm. 6.17
for a more general result).

PROPOSITION 1.1.21. Let Q C R, X be the complexification of L*(Q,.£?). Let {S,};>0 be a
bounded holomorphic semigroup on X, and p : Q x Q x R — C be the kernel associated to S;; if

there exist C,c > 0 s.t.
2
p(x.y,1)| < Cr™exp (—C|xty|>

forevery x,y € Q andt > 0, then for every k € N we have that p is k-times differentiable in t and

8" _d_k C‘x_y‘z
Sl < cr e (-0
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1.2. Abstract Measure Theory

We recall some definitions and results about positive measures and vector measures. A com-
plete treatment about real measures can be found in [15], [16]. For vector measures we follow
[30], for further reading see [22] Sec. 4, and [31].

We recall also that positive measures generalizes the well-known case of Lebesgue measure.

1.2.1. Measure spaces.

DEFINITION 1.2.1. [oc-algebras and measure spaces] Let X be a nonempty set and let .% be a
collection of subsets of X.

i) We say that .% is a an algebra (or also a ring of sets or a clan) if @ € ¥, E\UE, € %

and X \ E| € .% whenever E|, E» € Z.

ii) We say that an algebra .# is a ¢-algebra if for any sequence E,, € N C .% its union
U,en En belongs to .Z.

iii) For any collection ¢ of subsets of X, the o-algebra generated by ¢ is the smallest o-
algebra containing ¢. If (X, 7) is a topological space, we denote the c-algebra generated
by the open subsets of X by B(X); an element of ®B(X) is said a Borel set in X; the o-
algebra generated by the set of the form f~!(B) where f € C(X) and B € B(R) is denoted
with Ba(X); an element of Ba(X) is said a Baire set in X. Clearly Ba(X) C B(X). If
X is a metric space, we have Ba(X) = B(X).

iv) If % is a o-algebra in X, we call the pair (X,.#) a measurable space.

REMARK 1.2.2. With the De Morgan laws, it is easy to prove that algebras are closed under
finite intersections, and o-algebras are closed under countable intersections.

If 7 is a 0-algebrain X, if Y € .7 then we can define the restriction Z|y :={A € F|ACY};
we have that 7|y is a 6-algebra in Y; it can be proved that the restriction of B(X) is always B(Y).

The intersection of any family of c-algebras is a o-algebra; the set of all subsets of X is a
o-algebra; hence, the definition of generated o-algebra is well posed.

DEFINITION 1.2.3. [Finite measures] Let (X,.%#) be a measure space and i : . F — [0, 4)
(positive finite set function). We say that u is additive if

(1.2.1) H(AUB) = u(A)+ u(B)

forallA,Be #,st. ANB= Q.
We say that u is countably additive if u(@) =0 and u is c-additive on Z#, i.e., for any
sequence (Ej) of pairwise disjoint elements of .%# the equality

(1.2.2) u (U Eh> =) u(En)
h=0 h=0

is verified. A positive finite set function that is countably additive is said a positive finite measure;
in this case, (X,.#, 1) is said a measure space.

If 1 is a positive measure on (X,.%#) and there exists a countable sequence of sets {A, },en C
F s.t. U5 A = X and 1(A;) < oo for every i, then u is said o-finite.

We say that u is a probability measure if n(X) = 1; in this case (X,.%, i) is said a probability
space.
We say that u : % — R is a (finite) real measure if @ = u; — Up, where p; and p, are positive
finite measures.
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A measure on (X,*B(X)) is said a Borel measure. A measure space (X,B(X), 1) is said Borel
measure space (Borel probability space if u is a probability); we denote it also as (X, u).

If (X,B(X), u) is a probability space, X is said event space.

If (X, %, ) is a measure space, if Y € .7, then we can define the restriction Wy := .z,
(restriction as set function); we have that (X, .7, v 1 y) is a measure space; clearly for what we have
said about restriction of Borel o-algebras, the restriction of a Borel measure is a Borel measure.

If u, v are finite real measures on (X,.% ), we will define the sum g + v on (X,.%) in this
way:

(12.3) (H+V)(A) = u(A) +v(A),
for all A € .%. It is obvious that u + v is a measure.

REMARK 1.2.4. If (X, %, u) is a measure space, if A € %, then we can consider %, = {B €
F|B C A}, we have that (X, .7, ) is a 6-algebra and that (A,.7 4, Lz, ) is a measure space; in this
case we will use U to say M7,

A positive measure i on (X,.%#) has some properties:
i) u is increasing, i.e., for all A, B € %, we have u(A) < u(B) if A C B;
ii) u is continuous along monotone sequences, i.e., if A, is an increasing sequence in .#
then

oo

(1.2.4) w(JAn) = lim p(A,) = sup p(A,),

i=1 oo neN

and, if A,, is a decreasing sequence in .% then

(1.2.5) u(DlAn) = lim pt(A,) = inf pu(An);
iii) u is countably subadditive, i.e., if A, is a sequence in .# then

oo

(1.2.6) 1(Ua) < Y (A,
i=1

i=1

Hereafter, for a topological space X, if not otherwise specified, a positive measure u is always a
positive measure on (X,.# ) where .Z is the c-algebra of Borel subsets of X.

We usually say that u is a measure on X, meaning that there exists .# s.t. U is a measure on
(X,%); in this setting we will say that A is measurable on p or that it is g-measurable to mean
that A € 7.

If u is a set function on (X,.%#), we define (following [30]) its total variation || for every
E € . as follows:

(1.2.7) |1|(E) :=sup { Z |W(En)|: Ej € F pairwise disjoint, E = U Eh} .
h=0 h=0
Clearly, it is a set function on (X,.#). If .# is a o-algebra and u is a measure, then |u| is a
measure (i.e. is countably additive) (see e.g. [30], Proposition 1.3.11).
The measure || is called the total variation measure defined by u.
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A real measure 1 on (X,.#) with finite total variation is said bounded variation measure .

We will usually consider only bounded variation measure (with the exception of Lebesgue
measure).

If p is a measure on X,.7, then there exists a couple (X ,X7) of disjoint sets in .Z# s.t.
UANXT)>0and u(ANX~) <Oforall A € .Z. (see e.g. [15] Thm. 3.1.1). We can define u™
as ut(A):=pu(ANX*)and u~(A) := —u(ANX "), we have that these are positive measures and
U =u —pu- (Jordan decomposition); u*, ", are uniquely defined; we can give an alternative
definition of total variation as || := u* + u~, this definition coincides with the above.

DEFINITION 1.2.5. [Radon measures] A Borel measure 4 on a topological space X is called
a real Radon measure if for every B € B(X) and € > 0 there is a compact set K C B such that
ul(B\K) < e.

For the following result see e.g. [16], Theo 7.1.7.

PROPOSITION 1.2.6. If (X,d) is a separable complete metric space then every real measure
on (X,B(X)) is Radon.

1.2.2. Integrals. In the previous subsections we recalled the main concepts of measure the-
ory; in this subsection we recall some well-known concepts about integration, referring to [15]
and other basic books of measure theory for details and more.

1.2.2.1. Measurable functions and integrals.

DEFINITION 1.2.7. [Measurable functions] Let (X,.%), (Y,%) be measurable spaces. A func-
tion f: X — Y is said to be (.# —%)-measurable (or simply measurable) if f~!(A) € .Z for every
A €9.IfY is a topological space, a function f : X — Y is said to be .% -measurable if f~'(A) € .F
for every open set A C B(Y), i.e. fis (.# —B(Y))-measurable.

A function X — Y which is B (X) measurable is also said Borel measurable.

If (X,.#, 1) is ameasure space and (Y,¥) is a measurable space, and f is (.# —%)-measurable,
we will also say that it is g-measurable.

We will say that a function f is .% -measurable (or -measurable) on A € .7 if it is measurable
with respect to (A, Za, 17, )-

LEMMA 1.2.8. Let X a topological space. If f : X — R is a lower semicontinuous (or contin-
uous) function, then f is B(X)-measurable.

PROOF. Let f be lower semicontinuous: f~!((r,+oo]) is an open set for every r € R, hence
F~H(r1,r2]) € B(X) for every ry,ry, and B(R) is generated by the set of the form (ry, 7], hence
FH(A) € B(X) for every A € B(R); so f is B(X)-measurable. If f is continuous, then it is lower
semicontinuous, and we can conclude. g

We have that the set of measurable functions is a R-vector space contained in the space of
functions with real values.

In particular, if ¥ is a topological space and f is .%-measurable then f~!(B) € .Z for every
BeB(Y).

Hereafter, we will suppose that (X,.%#, 1) is a measure space, with 1| positive measure.

We say that a property is true for almost every (a.e.) x (or p-almost every x) if it is true in a

set A where A € % and u(X \ A) = 0; in particular, if f,g are functions, we will write f = g to
say that f = g almost everywhere. Sometimes, we will define classes of functions which are equal
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almost everywhere: to say that a function f is in a class g we usually say f = g, and sometimes
we will call functions these classes of functions.
A set A € Z is said negligible or p-negligible if p(A) = 0.

We say that a sequence of functions {f, },cy converges almost everywhere to a function f if
Sn(x) = f(x) for almost every x.
We recall a generalization of a part of Lusin theorem (see e.g. [16] Thm. 7.1.13).

LEMMA 1.2.9. If X is a topological space, if L is a Radon measure on X, if Y is a Banach
space and f : X — Y is a u-measurable function, then for every € > 0 there exists fe : X — Y
continuous s.t. L({x € X s.t. f(x) # fe(x)}) <e.

For E C X we define the indicator function (or characteristic function) of E, denoted by 1,
by
1 ifxeE
x):=1lg(x) =
XE(%) E(x) {0 ifx&E.
We say that f : X — R is a simple function if the image of f is finite, i.e., if f belongs to the
vector space generated by the indicator functions of measurable sets: clearly, the set of simple
functions is a R-linear space, and, if f is a simple function then |f| is a simple function.

n
We recall the definition of the integral of a simple function f = Z cilg, (where ¢c; € R and E;
i=1
is umeasurable for every i) as, for each A measurable set,

/Afduzxciu(AmEo;
i=1

this is well defined.
In this setting, we say that a sequence of simple functions { f;, } ,cn is mean fundamental with
respect to u if, for each € > 0O there exists N € N s.t. forall n,m > N,

/ \fo— ful du < €.
X

We have that, if two sequences {f, }neN, {gn }nen of simple functions are mean fundamental
and they both converges almost everywhere to one function f, then the integrals of f;, g, converges
to the same value (see e.g. [15] Lem. 2.4.2).

DEFINITION 1.2.10. We recall that a function f finite and definite up to a negligible set is
u-integrable if there exists a sequence {f, },en of simple functions which is mean fundamental
s.t. f, converges a.e. to f. In this case we write, for each A, measurable set, the integral of f on A

[ 0 dute)i= [ 7= tim [, du

for what we said, this is a good definition, which does not depend on the sequence f;,.
If fj4 is u-measurable on A € F (where U = U z,, see Definition 1.2.7) and the integral of f4
is defined on A then we will write

/Af(X) dp(x) ::/Afdu:/AfA(X) dp(x).
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If A NAy = @ then
| rau=[ gaus [ gau
A1UA,

Al A
Given a o-algebra, we have defined the class of measurable functions. Conversely, given a
family of functions, it is possible to define a suitable c-algebra.

DEFINITION 1.2.11. Given a family F of functions f : X — R, let us define the c-algebra
&(X,F) generated by F on X as the smallest o-algebra such that all the functions f € F are
measurable, i.e., the o-algebra generated by the sets { f <}, with f € F and7 € R.

DEFINITION 1.2.12. A sequence of measurable functions f,, converges in measure |l to a
measurable function f if, for every € > 0,

lim p({x € X < |f(x) ~ fu(x)] > €}) =0,
If u is finite, a sequence of functions which converges Lt-a.e. converges in measure U.

1.2.2.2. L? Spaces . In this subsection we recall the definition of L” spaces in a measure
space, and some results about them.

Herefter, X will be always a metric space.

For u positive, we define the L” (semi)-norms and spaces as follows,

1/p
LP(X,u) *= (/X |M|pdﬂ)

[t 1= (x ) := inf{C € [0,4o0]: |u(x)| < C for u-ae. x € X}.

|

if 1 < p <o, and

DEFINITION 1.2.13. For p € [1,+00] we define the space L”(X, i) as the space of equivalence
classes of measurable functions agreeing p-a.e. such that [|ul|prx ) <eoo. If f:X — Ris a
function, sometimes we will write f € L”(X, 1) to mean that it is in a class in L” (X, ); if A is a
set of functions X — R, sometimes we will write A C L” (X, i) to mean that each element of A is
in a class which is element of L” (X, ).

We define the set of locally L? functions, Lf (X, 1), of the equivalence classes of measurable

functions f agreeing p-a.e. s.t., for every x € X, there is a ball B centered in x s.t. fj € L (B, 1)
(a priori it is a set, not a topological space).

REMARK 1.2.14. We will usually treat the elements of L” and L‘Z) . Spaces as functions, and
sometimes we will say that f € LP(X, 1) to mean that f is an element of L”(X, ) or that it is a
representative of an element of f; if f is a function on X and g € LP(X, ), we will say that f = g
almost everywhere to mean that f is an element of the class g; if A is a set of functions on X, we
will say that A C L”(X, i) to mean that each element of A is element of an element of L (X, ).

All this remains true if we substitute L” with L? .

In this space, the operations of sum and product by a scalar are coherent, so L” (X, i) is a real
vector space. We have that, in this space, || - [|1»(x 4 is a norm and L” (X, i) is a Banach space, see
e.g. [15, Theorem 4.1.3]. When the measure space is obvious by the setting, we will use also the
notation || - || ..
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We have that L?(X, i) is a Hilbert space with the inner product

(f.8) = /X fedu.

We recall that for integral and L” spaces in a measure space we have many properties and re-
sults, analogously to the case of the Lebesgue measure: linearity of the integral,Holder inequality,
dominated convergence theorem, monotone convergence theorem.

We write explicitly only a version of the Lebesgue-Vitali theorem (see e.g. [15], Thm. 4.5.4),
and the Jensen theorem (see e.g. [15], Thm. 2.12.19).

THEOREM 1.2.15. Lebesgue-Vitali theorem Let (X,. %) be a measure space, let | be a posi-
tive finite measure on it and let (f;.) be a sequence of measurable functions and f be a measurable
function: we have that f € L'(X,u) and f, converges to f if and only if

lim sup/ | feldu = 0.
M= keN J{| fil>m}

and fi — f in measure, i.e.,

(1.2.8) l}glgo[.t({xEX: |fe(x) —f(x)| >¢€})=0  foreverye>O0.

THEOREM 1.2.16 (Jensen). (Jensen Inequality) Let (Q,.#,P) be a probability space, let G C
F be a sub-c-algebra, let X € L'(Q,.7,P) be a real random variable, and let ¢ : R — R be a
convex C' function such that ¢(X) € L'(Q, .7, P).

(1.2.9) E(poX|¥9) > o E(X|9).
We recall also the next Corollary.

COROLLARY 1.2.17. If u is a finite measure and p,q € [1,+o0] with g < p, then LP (X, 1) C
L4(X, 1) the inclusion is a continuous embedding LP (X, ) — LY(X, ).

Moreover, we recall that sequence of functions which converges in sense L” converges in
measure.

We shortly recall also some concepts about Bochner integral (see e.g. [32], Sec. II1.2 and also
[31], Sec. II1.2).

Let (X,.%, 1) a measure space, Y a Banach space, therefore a definition of simple functions
from X to Y is possible ([32] Def. II1.2.9), hence we can define the integral for these functions;
hence a function is Bochner u-integrable if it satisfies (in the vector case) a condition expressed
in the same way of the p-integrability, and we define the u-integral in the same way. The L?
spaces of Y-valued functions are defined as in the scalar case (see e.g. [32], Sec. II1.3); for every
1 < p<oo, LP(X,u,Y) is the space of the equivalence classes of Bochner integrable functions
F :— Y such that

1/p
1Fllr) = ( / IIF(x)II‘y’u(dx)> <o,

LP(X,u,Y) is a Banach space with the above norm. If p =2 and Y is a Hilbert space, L” (X, u,Y)
is a Hilbert space with the scalar product

(F.G) o oy = / (F(x), G(x))y i (d).
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We define
L(X,u,Y) = {F : X — Y measurable s.t. ||F|| =y u.y) < oo},

where
1Pl oy 1= inf{M > 0 ([ F ()l > M}) =0}

1.2.3. Other properties and definitions about real valued measure.

Weak™ convergence of measures. Given a topological space X, the set of real Borel measures
I is a vector space in an obvious way. All continuous and bounded functions are in L' (X, ) and
we define the weak®™ convergence of measures by

(1.2.10) Hi—pu = /deuj—>/xfdu VfeCy(X);

if we consider the set of the measures (or of finite measures), let the weakest topology on it s.t.
the sequence which weak* converges converges also in the topology, this is said weak™ topology
weak” topology of measures.

The particular case K compact justifies the term weak™ convergence, as seen in the next theo-
rem.

THEOREM 1.2.18. (Riesz-Markov or Riesz representation Theorem) If K is a compact Haus-

dorff space, then C(K) is a Banach space, the set .# (K) of Radon measures on K can be seen as
(C(K))* by the isometry

i:%(KH(C(K))*uw(fH/deu);

in this setting, ; —* W iffi(u;) —* i(1) (i.e. we have the convergence in (C(K))* with the weak*
topology).

We have this result by A. D. Alexandroff, sometimes called Portmanteau Theorem (see e.g.
[16] Cor. 8.2.10).

THEOREM 1.2.19. Let X be a metric space; let {l;}icn a sequence of probability measures
on (X,B(X)), and let u be a measure on (X,B(X)). The following are equivalent.
) ="y
ii) limsupu;(F) < u(F) for every closed set F;
J—rteo
iii) liminfuj(Q) > () for every open set Q.
Jrteo

Absolute continuity and singularity of measures. Let U be a positive finite measure and v a
real measure on a measurable space (X,.# ). We say that v is absolutely continuous with respect
to 1, and write v < u, if for every B € .# s.t. u(B) =0 we have |v|(B) = 0. If u, v are real
measures, we say that they are mutually singular, and write v | p, if there exists E € % such that
[Wl(E) = 0 and [v|(X \ E) = 0.

If u,v are mutually singular measures, the equality |u + v| = |u| + |v| holds. If p < v and
Vv < U we say that u and v are equivalent and write u =~ v. If u is a positive measure and
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f € L'(X,u), then the measure v := fu defined below is absolutely continuous with respect to i
and the following integral representations hold:

(1.2.11) v(B):/fdu, v](B):/\f|du VBe 7.
B B
We recall the Radon-Nikodym theorem.

THEOREM 1.2.20 (Radon-Nikodym). Let U be a positive o-finite measure and let v be a real
measure. Then there is a unique pair of real measures V¢, v* such that v¢ < i, v¥ 1L u and
v = V¢ + V5. Moreover, there is a unique function f € L'(X,u) such that v® = fu. The function
f is called the density (or Radon-Nikodym derivative) of v with respect to L and is denoted by
dv/du or Z—“i.

Since trivially each real measure u is absolutely continuous with respect to ||, from the
Radon-Nikodym theorem the polar decomposition of i follows: there exists a unique real valued
function f € L'(X,|u|) such that u = f|u| and |f| =1 |u|-a.e.

Image measure. We recall the notions of push-forward of a measure (or image measure) and
the constructions and main properties of the product measure. The push-forward of a measure
generalises the classical change of variable formula.

DEFINITION 1.2.21. [Push-forward] Let (X,.#) and (Y,%) be measurable spaces, and let
f:X — Y be such that f~!(F) € .# whenever F € 4. For any positive or real measure { on
(X,.7) we define the push-forward measure or the law of i under f, that is the measure g o f !,
sometimes denoted by fyu, in (Y,% ) by

pof '(F)=p(f'(F)) VFe¥.

By the previous definition we have the change of variables formula. 1f u € L'(Y, o f=1),
then uo f € L'(X, 1) and we have the equality

(1.2.12) /Yud(uofl):/x(uof)dy.

Product measure. We consider now two measure spaces and describe the natural resulting
structure on their Cartesian product.

DEFINITION 1.2.22. [Product c-algebra] Let (X;,.#;) and (X3,.%,) be measure spaces. The
product 6-algebra of % and .%,, denoted by .%| x .%,, is the ¢-algebra generated in X; x X; by
4G = {El xXEy: E| € yl,Ez S 3‘\2}

REMARK 1.2.23. Let E € %] x .%,; then for every x € X; the section E, := {y € X5: (x,y) €

E} belongs to .%,, and for every y € X, the section E := {x € X;: (x,y) € E} belongs to .%]. In
fact, the families

G ={Fe F\xFp: Fre Fr}, 9 :={FecF xF: FecF}
are o-algebras in X x X, and contain ¢.

THEOREM 1.2.24. Let (X, F1, 1), (X2,-%2, W) be measure spaces with L1, U positive and
finite. Then, there is a unique positive finite measure [l on (X1 X Xo, 7 X F,), denoted also by
U1 @ Uy, such that

W(Ey X Ey) = w1 (Ey) - w2 (E2) VE| € %1,VE, € %>.



1.2. ABSTRACT MEASURE THEORY 23

Furthermore, for any -measurable function u : X; x X, — [0, 0| the functions
x> | ulx,y)pa(dy) and y— | u(x,y) i (dx)
Xz Xl

are respectively [L1-measurable and Ly-measurable and

/Xl Xqudu =/ </qu(x,y) uz(dy)> 11 (dx)

- /X2 (/Xlu(x,y)ﬂl (dx)) Ho(dy).-

For n € N, if, forevery i € (1,...,n), (X;, %, L), is a probability space, the product c-algebra
F1® - F, is that generated by the family of sets of the form

By x---XB,, B;c%.

We have that if X; are all normed vector spaces, the product of the Borel o-algebras is the
Borel o-algebra on X; X ... X X,.
We have that there exists a unique measure ft on (X X ... X X,,,. 7| ®...®.%,) s.t.

W(By X ...xBy) = (B1)-...  Un(By)
where B; € .%; for every i € N.

DEFINITION 1.2.25. In the above hypothesis, we say that u is the product measure of ..., l;,,
and we denote it with ) ® ... ® U,.

Fourier transforms of measures. Another important concept is that of Fourier transform of
measures. Let X be a separable Banach space; given a probability u on X, we define its Fourier
transform f1 : X* — C by setting

(1.2.13) (&) = / %t 1y (di);
X

if X is a Hilbert space, we can canonically define [l on X.
We list the main elementary properties of Fourier transforms.

(1) fi is uniformly continuous on X;

() 0(0) = p(X);

(3) if fl1 = fIp then [ = 3

(4) if u; — p in the sense of (1.2.10), then fl; — [I uniformly on compact sets;

(5) if (u;) is a sequence of probability measures and there is ¢ : X — C continuous in & =0
such that fl; — ¢ pointwise, then there is a probability measure y such that i = ¢.

Lebesgue measure.

DEFINITION 1.2.26. For d € N there is only a Borel measure .#¢ on R s.t. for every x € RY,
a > 0, we have

L (x+a([0,1))%) = a®.

This measure is called the Lebesgue measure .
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1.2.4. Hausdorff measures . Let A C R?; C the set of the countable coverings of A (i.e. the
set of countable sequences of sets which union contains A), each element of € can be indicated as
{O;}ien; for 6 > 0 we denote

Cs:= {{Oi}igN € €|diam(0j) < 6}

DEFINITION 1.2.27. Let Ac R? . neNe < § < .
We define the set function

H(A) = {o,v}i;geea {ia(n) (dianlz(Oj)) }

j:
where o(n) is the n-Lebesgue measure of a unit ball in R”.
We define the measure
JC"(A) :=sup ' (A) = lim JZ5' (A).
§>0 6—0

We have that it is well defined as a positive Borel measure (if restricted to Borel set), and it is
called n-Hausdorff measure.

We have these properties:
(1) if n > d then s#"(A) = 0 for every A € B(R%);
(2) if n < d then " (A) = +oo for every A open, A # &,
(3) if n=d then J#"(A) = £¢(A) for every A € B(R?);
(4) if #"(A) < +oo for some 0 < n < d then for every t € N, r < n we have " (A) = +oo
and for every ¢ > s we have J#"(A) = 4o0

We also introduce the spherical Hausdorff measure, 8": the idea is that we define CS as the set
of the countable open coverings of A made by balls, and similarly to the definition of Hausdorff
measure,

€3 := {{0:}ien € €5|diam(0;) < §}.

S5(A) = {Oi}iiill\fl‘eeé { i o(s) (diamz(Oj)> }

8"(A) :==sup85(A) = lim 85(A).
§>0 6—0

1.2.5. Vector measures in X. Now, we briefly introduce the vector measures (see e.g. [22]
Sec. 4, [30], [31)).

Hereafter, H is always a separable Hilbert space with a basis {A;};cn; for every n € N we
define F,, :=< hy,...,h, >.

DEFINITION 1.2.28. Let (X,.%#) be an algebra and H a Hilbert space. A set function u from
Z in H, is said to be a (finitely additive) vector measure with values in H if, for every E|,E, € %
with Ey NE, = @, we have u(E| UEy) = u(E) + u(Ez). If E € .F we will also say that E is
U-measurable.

We will say that u is a countably additive vector measure with values in H if, for every
sequence {E, },en of pairwise disjoint sets in .% we havep (U] E;) = L5 1(E;).

If # = % (X) we will say that u is a Borel countably additive vector measure.
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If p is a (finitely or countable) additive vector measure on (X,.%#) and A € .%, we can define
the restriction U, 1= .7, (as restriction of set function), and we have that 4 is a (finitely or

countable) additive vector measure on (H,.7 ).

For a vector measure y with values in H, for h € H we will write (u,h),, to mean the real-
valued measure defined as
(s ) (A) = (1 (A); )y
for all A y—measurable.

DEFINITION 1.2.29. Let H be a Hilbert space, and Q be a topological space, i a vector (Borel)
measure on £ with values in H.

Let A the set of all the finite sequences {Aj,...,A,} of u-measurable sets s.t. A;NA; = & if
i # j. Given A that is y-measurable,

n
Aa = {{A1,...,A,} € AJA; CAforevery i A= JA;}.
i=1

The set function on R U {+eo} defined as

1](A) = sup{i 1A [{A ey € Ad)

for all A that is yt-measurable is a finitely additive (see (see e.g. [22] Sec. 4, [30])), and it is called
variation measure of L.
We say that p has bounded variation if |u](Q) < +oe.

PROPOSITION 1.2.30. u is a countably additive vector measure if and only if |lt| is a (count-
ably additive) positive finite measure.

Clearly, each component of u is absolutely continuous respect to |1t|.
We have this easy extension of the Radon-Nikodym theorem (see e.g. [22] Theo 4.4, [30]
Thm. 13.4).

LEMMA 1.2.31. If U is a countably additive vector measure on Q with values in a Hilbert
space H, then there exists a function © s.t. |o|g = 1 |it|-almost everywhere and U = o|u|, i.e. for
all h € H, A |u|-measurable set

@)y = [ (@b (@)
Hereafter, 4 = o|u| will be called the polar decomposition of .
We recall a generalization of a part of Lusin Theorem (see e.g. [16] Thm. 7.1.13).

LEMMA 1.2.32. If Q is a metric space, | is a Radon measure on Q, Y is a separable Banach
space and f : Q — Y is a U-measurable function, then for every € > 0 there exists fe : Q =Y
continuous s.t. W({x € Q s.t. f(x) # fe(x)}) <e.

We recall also this known fact (see e.g. [8], 3.1 for a finite dimensional version) and we prove
it.

LEMMA 1.2.33. If Q is a metric space, U is a Radon measure on Qand H is a separable
Hilbert space, then

1](Q) = sup} / 4 Uy f € Co(QUH), [l < 1 everywhere}.
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PROOF. Let o|u| a polar decomposition of u (see Lemma 1.2.31). Clearly

/ d(fothy = / (f. 0y dlit] < |1](Q)
Q Q

for all measurable f s.t.|f|y < 1 everywhere.
By Lemma 1.2.32, for each € > 0 the function ¢ can be approximated by a continuous function
O s.t. |u|({x € Qs.t. 6(x) # 0g(x)}) < € now we can define the continuous function

o (o ifloelnt) > 1,
) Og(x)  otherwise ’

we have that || f¢|| < 1 |u|-almost everywhere, and f¢(x) # o(x) only if ¢ # o or if x € A where
A:={xeQlo(x) =0¢(x) and |o¢(x)|g > 1} C{x € Q| ||o]| (x) > 1},

A is Borel (o is measurable and o is continuous) and ||(A) = 0 because ||o|| = 1 |u|-almost
everywhere. So we have

ul(freQst o) £ felx)}) <€

and
i@~ [ tr.0) dlu] <26
and we can conclude. O

DEFINITION 1.2.34. Given Q C X open set, for each i € H, the set Lip, ,(Q) will be the set
of the restrictions to Q of the measurable functions f on X s.t., there exists ¢ > 0 s.t., for every
x € X, the function f, : t — f(x+1th) is Lipschitz with Lipschitz constant less than ¢, and f =0
everywhere out of Q.

DEFINITION 1.2.35. For each m € N, for Q C X open set, we define Lip, ,(Q, H) as the set
of functions f: Q =< hy,... . hy >, s.t. fi € Lipy ;, (Q) foreachi € {1,...,m}.

The next Lemma is inspired by ([S1], Lem. 2.3). We recall that, by Lemma 1.2.31, there exists
o measurable s.t. |o|g = 1 and u = o|u| (polar decomposition).

LEMMA 1.2.36. IfQ is a open set in X, if U is a countable additive vector measure on Q with
values in H and bounded total variation and o || is the polar decomposition, then

ul(Q) :Sup{/g<67f>H dlu|: meN, f € Lip,(Q,H), sup|f(x)|s < 1}.

xeQ

PROOEF. It is obvious that

/<c,f>H d\u|s/|c|ﬂdu|=|u|<9>
Q Q

forallm € N, f € Lip,(Q,H), sup,cq |f(x)|[z < 1.
Let e > 0.
By the Fatou lemma, there exists m s.t.

\mm)—/g,/irmvdrm <e
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so, we can consider U,,, a measure with values in R s.t., foreveryi € 1,...,m,

(s hi) gy = (B €i)
where e¢; is the versor in the direction of the i-th axis, and we have (U, e;)ps = 0;|1t|; we have

|| = \/XIL, 02| (so [n|(A) < |u|(A) for every A which is u-measurable) and if oy, =

_1
Y ( i 0',-2) 2 0;e; we can rewrite U, = O(m) |m| (polar decomposition). By what we said, we
have

(1.2.14) 11(Q) — 1a](@) <.

Now, we can apply Lemma 1.2.33, so there exists a function [ € C(Q,R"™), sup,o(|/(x)]) <1
S.t.

(12.15) 1al(@) < [ (G i .

|| is Radon (because X is separable), hence we can suppose that there exists K compact in
Qs.t. |u[(Q\K) < &, and hence also |, |(Q\K) < €; hereafter a := || (K); now, recalling that
|O(m) [Rm, [{|Rm < 1 we have

(1.2.16) /Q<G(m)’l>R’" d\,um\ S/K<G(m),l>Rm d‘,LLm‘-FS.

Now K is compact; we consider Lip,(X) (Lipschitz bounded functions); it is a lattice, and,
if we consider x,y € X (x # y and a,b € R, there exists a function y € Lip,(X) s.t. y(x) =a,
y(y) = b; so we can apply the Stone-Weierstrass theorem, for each i there exists g; € Lip,(X) s.t.
gi approximate /; on K (where /; := (I, e;)gn) in such a way that

sup{g;(x) —L(x)|x €K} < ea'm1,
and we introduce g := Y 1" | g;e;, we have that
sup{|(g —1)(x)|lx € K} < ea”

and in particular
sup{|g(x)|[[x €K} < 1+ea!

(because |l|gm < 1); moreover if we define on R” the function

Flx)im {x if [x] < 1

& x> 1,
if x| < 1+ ¢ then |F(x) —x| < €;if G := F og, then we have |G|gn < 1 everywhere and
sup{|(G —1)(x)|]x € K} < sup{|(G—g)(x)|[x € K} +ea™' <2ea”"

so by definition of a,

Now, we have that dist(K,X\Q) > 0, that K is compact and X\ Q is closed, hence there exists
6 € Lip,,(Q,R™) s.t. itis equal to 1 on K and to 0 on X\Q, and |8 < 1 everywhere; hence if
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v := GO, then y € Lip, ,,(Q,R™), |y|gn < 1 everywhere (because |G|r» < 1 everywhere) and
we have g|x = Y[k, so

O(m)» &) pm A|lm| = O(m)> w At
(Gt &)z dltnl = [ (G0 W)

So, by (1.2.14), (1.2.15), (1.2.16), (1.2.17), we have

“,L’(.Q.) < /I;<G(m)7 W>R’" d’um’ + 5S¢,
now, if we define fe := Y (W, ;)gn hi, we have that fe € Lip, ,,(Q,H),
sup{|fe(x)|ulr € Q} <1
and hence

[ (o sedy diul <
Q\K
(because |u|(Q\K) < €); therefore

(@) < /Q (0. fehy dl] + Se:

and by the arbitrariness of € we concluded. O

1.3. Notions of probability theory

1.3.1. General probability, random variables and random processes. In this chapter we
refer to [16] (particularly for conditional expectations) and to [27] (particularly for Markov pro-
cesses).

For us, a probability space is a measure space (Q,.% ), t) where U is a positive measure with
uQ)=1.

We recall this definitions.

DEFINITION 1.3.1. A random variable Y on a probability space (Q,.7, 1t) is a .7 -measurable
function Y : Q — R; if Y € L!(Q, u) we define the expectation, or mean, of ¥

E(Y):= / Y du,
Q
we will write also E,, to mean E; if Y € L?(Q, it) we define the variance of Y
Var(Y) := E(Y?) — (E(Y))* > 0.
IfY;,Y, € L2(Q, 1), we define their covariance
COV(Yl,Yz) = COV(YQ,Yl) = E(Y1Y2> — E(Yl)E(Yz)

Let E a topological space. A E-valued random variable Y on a probability space (Q,.%, 1) is
a function Y : Q — E which is .% -measurable (with respect to B(X)).

For a real valued random variable Y on (Q,.7, 1) we define its law as the measure g oY !
(measure on R).

We remark that, if Y is a E-valued random variable and B € B(E), then llgoY is a random
variable.
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For simplicity, given a E-valued random variable Y on (Q,.%#, u) we will write, for B € B(E)
u(Y € B):=u({we QY (w) € B};
when Y () € B for every m, we say that Y € B surely; when (Y € B) = 1 we say that Y € B
almost surely (a.s.).
We can also consider n topological spaces E|,...,E,, and for every i € {1,...,n} a E;-valued

random variable Y; on (Q,.%, ) (it is equivalent to consider a random variable ¥ = (¥1,...,Y,) in
E| x ... x E,), and we write, if B; € B(E;) for every i,

uYr €By,....Y,€B,) =u{owcQYi(w) €By,...,Y,(®) € B,}).

DEFINITION 1.3.2. Let E be a topological space. A (E-valued) stochastic (or random) process
{Y,};c1 on a probability space (Q,.%,u), indexed on the interval I = [a,b] C R is a function
Y : I x Q — E such that for any ¢ € I the function ¥;(-) =Y (z,-) is a random variable; we can also
say that a random process is a quadruplet Y = {Q,.7 ,{V¥, };er, 4 }. A R-valued stochastic process
will be called a real stochastic (or random) process

A d-dimensional random variable Y on a probability space (Q,.%, 1) is a .%-measurable
function Y : Q — R,

A R?-valued stochastic process will be called d-dimensional stochastic (or random) process
(Y;)re7 on a probability space (Q,.%, 1), indexed on an interval / C R is a function ¥ : I x Q — R4
such that for any 7 € I the function ¥;(-) =Y (¢, -) is a d-dimensional random variable on (Q,.%, ).

DEFINITION 1.3.3. Given two stochastic processes ¥;, Z; on a same probability space (Q,.F,u),
indexed on the interval I = [a,b] C R, we say that Z, is a version of ¥, if, given
A={w e QlY,(0) =7 (w) forevery t € [a,b]}
then A € .% and u(A) = 1.

The typical example of stochastic process will be the standard Brownian motion: it is a sto-
chastic process which admits various models, all respecting the above conditions.

DEFINITION 1.3.4. A real valued standard Brownian motion on [0, 1] is a stochastic process
Byse(o,1] on a probability space (Q,.%, i) such that:
1) Bg = 0 almost surely;
ii) forany z,s € [0, 1], s < ¢, both random variables B; — B, and B,_ have the law

1 Jcf?
exp —
27(t —s) r—s

iii) forany 0 <79 <1 <... <ft, the random variables B;,,B;, — By,,...,B;, — B;, , are inde-
pendent.

2L dx);

Let us introduce the notion of conditional expectation.

THEOREM 1.3.5. We consider a probability space (Q,. %, L), a sub-c-algebra § C .F. Let
X € LN(Q,. 7, 1) a random variable, there exists a random variable Y € L'(Q,% 1) such that

(1.3.1) /Y du = /X du, VA e Y,
A A
two random variables with this property are equal almost surely. We denote the class of this Y as

In addition,

E(X|9)| <E(|X||¥) almost surely.



30 1. NOTATIONS AND MISCELLANEOUS OF BASICS FACTS

We call E(X|¥) the expectation of X conditioned by ¢ (when ¥ is obvious for the setting we
call Y also conditional expectation of X); we will indicate it also as E, (X|¥).

REMARK 1.3.6. Using approximations by simple functions, we have that (1.3.1) implies

/nguz/gIE(Xl%du
Q Q

for any bounded ¢—measurable functions g : Q — R.

PROPOSITION 1.3.7. The conditional expectation satisfies the following properties.
) If 9 ={0,Q}, then E(X|9) = E[X] almost surely.
i) E[E(X|9)] =E[X].
iii) Forany X,Y and o, € R, E(aX + BY|¥9) = aE(X|9) + BE(Y|Y) almost surely.
iv) For any countable sequence {X;}icn, if Yio E(|Xi||9) < co almost surely then Y ;> | E(X;|9) =
E(Y2, X:|9) almost surely.
iv) If X <Y, then E(X|9) <E(Y|¥) almost surely; in particular, if X > 0, then E(X|¥4) >0
almost surely.
V) If 2 C 9 is a sub-o-algebra of 9, then almost surely

E(E(X|9)|2) = E(X|.2).
vi) If X is ¥-measurable, then E(X|9) = X almost surely.
vii) If X,Y,X Y € LY(Q,.7,P) and X is 9-measurable, then
E(X-Y|¥9)=X-E(Y|9)
almost surely.

DEFINITION 1.3.8. Let Y be a E-valued variable on (Q,.7, 1), let B € B(E) and ¢ a sub-
o-algebra of .#; we define the conditional probability of B with respect to ¢ (or probability
conditioned by ¢). as the function u(Y € B|¢): Q — R defined by

u(Y € B|9):=E,(llgoY|¥9)(w);
we have that y(Y € B|¥) is a random variable on (Q,%, ).

PROPOSITION 1.3.9. The conditional probability satisfies the following properties.
D) IfY ={2,Q}, then u(X € B|¥9) = u(X € B) almost surely.
i) ifY is 4 measurable, then
H(Y S B’g) = llgoY

almost surely.

iii) E[u(X € B|9)] = u(X € B).

iv) For any countable sequence of .7 -measurable subsets {B;}icn with mutually null inter-
section, then

oo

Y u(x € Bl9) —u(x < UB9)

i=1 i=1
almost surely.
V) If 2 C 9 is a sub-c-algebra of 9, then

E(u(X € B|¥)|.A) = (X € B|Z)

almost surely.
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vi) If Y1, is a Ej-valued random variable and Y, is a E-valued random variable, if Y is
% -measurable then

[,L((Y],Yz) € By x Bz’g) = (1131 OY]) ~‘LL<Y2 € Bz‘g)
almost surely.

1.3.2. Markov processes. Let (Q,.7) be a measurable space; a filtration {7}, 4o in
(Q, %) is a family of o-algebras s.t. % C .7 for every t € R, and, %, C % for0 <s<t. A
filtration {7, },¢[0 1| is said adapted to a E-valued stochastic process {V; };cg+ (or V) if ¥, : Q — E
is #;-measurable for every 1 € I.

DEFINITION 1.3.10. In the above setting, a function 7 : Q — [0, +o9] is called a stopping time
if it is a random variable on (Q,.7) s.t. {® € Q|7(w) <t} € Z for every t € RT(hence T At is
real variable in (Q,.%;)).

For a stopping time 7 we define the o-algebra .7, generated by

{An{w c Q|t(w) <1}t > 0,A € F};
clearly .%; is a sub-c-algebra of .%.

We give a definition of the Markov processes, which are linked to stochastic processes (we
base on [27]). Hereafter, E is a topological space; we define Eg as a set given by E and a point
d (cemetery point): E; = E Ud, with a topology s.t. E is a open subspace of E,, so the Borel
algebra of E} is

B(Ey) =B(E)U{BU{d}|BecB(E)}.
DEFINITION 1.3.11. We define Markov process on (E,*B(E)) is a quintuplet

Y = ('Q'a 7, {Yf}te[07+w]v {HX}XEE(; ) {%}te[o,ﬁ-w])

(where (Q,.7) is a measurable space, {-7 };¢[o 4| is @ filtration on (Q,.7), Y, is a function Q — E
for every 7 € [0, 4|, and L, is a probability on (Q,.%) for every x) which satisfies these condi-
tions.

i) For each x € E; we have that (Q, 7, {Y; },c[0, 1<), ) is a Ey-valued stochastic process
of Ej s.t. Yiw(®) = d for every @ € Q.
ii) Foreachr > 0, B € ®B(E;), the function on E, defined as

x> i({o € QY (o) € B)}

is B(E,)-measurable.
iii) ¥; is .#;-measurable for every ¢ € [0, +oo] and, for every x € Ey, 5, t > 0, B € B(E,) we
have that

W(Ys1s € BlF;)(0) = Wy, () (Y5 € B) for p-almost every @ € Q.
iv) uy(Y; =9)=1foreveryt >0.
v) W (Yo =x) =1 forevery x € E,.

In this setting, for every @ € Q we define the sample path of ® as the map [0,+o) — E,
=Y (o).



32 1. NOTATIONS AND MISCELLANEOUS OF BASICS FACTS

Clearly, a Markov process Y can be seen as a stochastic process, if we don’t consider the
filtration {7, }c(0, 4oq-

For a Markov process

Y= (Q7 g\u {Yt}t€[0,+w] ) {.ux}XEEa ) {’%}[E[O,+w])7
if 7 is a stopping time on the filtration {.% }c(o 4|, and g is a probability on (€, .%), we define
for every ¢ € [0, +o0] the random variable Y7, on (Q,.%, 1) as
Yot (@) = Yy ()4 (@);
if v is a probability on (Ey,B(E;)), we define i, as the measure on (Q,.%) defined as
(1.3.2) Uy(B) := | u(B)dv(x),
Ey

we have that uy is a probability.

DEFINITION 1.3.12. Let

Y = (9797 {K}ze[0,+w]7 {ux}x€E37{’%‘}t€[0,+oo])

be a Markov process on (E,B(E)). We will say that it is a strong Markov process if it satisfies the
strong Markov property, i.e. for every v probability measure on (Ey,B(E,)),t > 0, B € B(E;),
and for every stopping time T on {7 } (o, 4. We have

v (Yeir € Bl72)(0) = Wy, (@) (Y: € B) for py-almost every @ € Q.
In particular, the strong Markov property implies that for every x € E, t > 0, B € *B(E; ), and
for every stopping time 7 on {.%, } [0 4| We have
tx(Yeir € Bl F2)(0) = Wy, (@) (Vi € B) for pic-almost every @ € Q.
Hereafter, we will always suppose that E is a separable metric space (in [27] there is a weaker
hypothesis, that E is a Lusin space).
DEFINITION 1.3.13. Let E be a separable metric space. A strong Markov process

Y=(Q,7, {Yt}ze[o.,-s-oc]» {a}reky, {t%}te[o,—i—m])
on (E,B(E)) is called a Borel right process if it satisfies this properties:
i) forevery @ € Q, the set I := {r € [0,+o0||Y;(w) = d} is a closed interval and 4o € [;
ii) for every ¢t > O there exists a map 6, : Q — Q s.t. Y, = Y; 06, for every s > 0; this map
is called shift operator;
iii) for every m € Q, the sample path 7 — Y, (®) is right continuous on [0, +-oo].

Let Y be a Borel right process on (E,B(E)), let B € *B(E), we call exit time from B the
random variable given by
o — inf{t € [0, +<]|Y;(®) ¢ B}
and hitting time in B the random variable given by
o — inf{r € (0,+<||Y;(®) € B}
We have this proposition (see e.g. [27], Appendix, Theo A.1.19).
PROPOSITION 1.3.14. Let E be a metric separable space, B € B(E); if Y is a Borel right

process on (E,*B(E)), the exit time from B and the hitting time B are stopping times with respect
to the filtration of Y.
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1.3.3. Markov processes and symmetric forms. Let Y be a Markov process,
Y = (nga {E}ze[0,+w]7 {HX}XEE()?{’%‘}IG[O,JrOQ])
we define for every ¢ > 0 the kernel measure on B(E) x E (or kernel)
K} (B) := (¥, € B):

for every t > 0, x € E, the set function K} is a positive bounded measure with K}(E) < 1;itis a
probability if (,(¥; = d) = 0. Moreover, we can define the transition function P, a function on
the set of bounded measurable real functions on E: if f is such a function

(Bf)(x) = / () dKZ(y);

P, satisfies the Chapman-Kolmogorov condition (see e.g. [27], Def. 1.1.13 (t.1)) i.e. if 0 <
s<t

(1.3.3) P f =P_s(Bf)
for every f measurable bounded function.

REMARK 1.3.15. The Chapman-Kolmogorov condition is an equality of functions, not of
class of functions; the equality (1.3.3) is verified in every x, not only almost everywhere.

Now, it can be proved (see [27], Sec. 1.1) that, if there is a positive measure m on E, to such
P; we can associate the semigroup {7; },c[0 +w) on L?(E,m) defined as

L0 = [ £0)dK0):
E
it is a strongly continuous contractive symmetric semigroup.

If Y is a Markov process on E, and if m is a positive measure on E, then we can associate to Y
a self-adjoint strongly continuous contractive semigroup 7; on L?(E,m), and to T; we can associate
a closed symmetric form a.

DEFINITION 1.3.16. The form (a,D(a)) defined above is the form associated to the Markov
process Y.

Let Y be a Markov process on E € B(R?), m := £, to Y is associated the semigroup 7; on
L?*(E,.£); we suppose that a kernel p is associated to 7;; so the kernel measure is

KX(B)(x) = (Y, € B) = / p(e,y.1) dy

for every x € E, B € B(E) and t > 0; the transition function is

Pf(x)= /E fO)p(x,y,t) dy

for every x € E, t > 0, f bounded measurable real functions on E, and we have also this version
of the Chapman-Kolmogorov property: for every x € E, 0 < s < ¢, f bounded measurable real
functions on E

(13.4) / FO)pCrynt) dy = / / FOIPEwt —)p(x,2,s) dy dz
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1.3.4. Example: Brownian motion and absorbing Brownian motion. For this subsection
we refer to ([27], Exa. 3.5.9).

For d > 1, there exists a Markov process on (R?, #¢) such that its semigroup on L?(R¢, %)
has kernel

2
=51
2t

for x,y € R and ¢ > 0); it is called heat semigroup (in this subsection we will indicate it as T;),
and we have that the form associated if (W!2(R¢, .#?) D) where, for f,g € W'2(R¢, .£7),

;/Rd Vf(x)-Vg(x) dx.

plx,y,t) == (27rt)_% exp(—

(1.3.5) D(f,g) ==

The generator of 7; is the operator associated to (W!2(R?, %), D), it is called Laplace oper-
ator, and it is indicated as A.

We have that there exists a Borel right process with the above properties (see also [27] Theo
1.5.1); such a Markov semigroup Y is called a d-standard Brownian motion (the stochastic process
associated to Y is a d-dimensional centered Brownian motion, which we will define in the sequel).

In particular, such a process has the strong Markov property; we have that the sample path of
such process is almost surely continuous in [0, +oo).

Now, for a d-standard Brownian motion ¥ on (R?, #9)

Y = (Qa 7, {Yf }16[0,4—00] ) {“LX}xER‘g > {%}ZE[O,-&-M])

given D open set in R?, we can define the exit time Tp from D: it is a stopping time by Proposition
1.3.14; we define the absorbing Brownian motion Y” on (D, £?) as

YP = (nya {KD}ze[O7+oo]7{Hx}xeDga{yt}te[O,er])
(Dy = DUJ) where, for every t > 0, ® € Q,

Y2 () = Y (o) ifr<1p(w)
! ) otherwise

This process Y2 is also associated to a strongly continuous semigroup S; on L?(D,.#“) and to a
form (Wol’z(D,.,iﬂd),D), where

Wy (D, 2%) = {f € P(R!, 2)|Fg e W' (R’ 2%) s.t. gp = f and g\ p = 0}

and D has the same formula of (1.3.5) on Wo] ’Z(Rd,.i”d ); it is a closed, continuous and symmetric
form.

The operator associated on L? to this form and which generates S; is called Laplace operator
with Dirichlet boundary condition and is indicated as Ap (D(Ap) C Wy (D,.2%)).

REMARK 1.3.17. Clearly, for every r > 0 and x € D we have w,(1p <r) = u,(Y? = 9).

Now, we consider the transition functions: the kernel measure of Y can be written as
P (B)(x) = /p(x,y,t) dy = (Y, € B)
B

for every x € RY, B € B(R?) and ¢ > 0.
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Let PP the kernel measure of Y2 and x € D: we have that for every B € B(D)
PP(B)(x) = uc(Y,” € B) = (Y, € B,tp > 1) < (Y, € B);

now PP(-)(x) is a positive measure absolutely continuous with respect to B;(-)(x), which is abso-
lutely continuous respect to .Z%; so given x € Q and ¢ > 0, there exists ¢ : D — R, the density of
P,Dm with respect to £q, and we have, for every 7 > 0, for L ae x,yeD

eI
— )

(13.6) qe3.) = ;) < plryr) = (2m1) Fexp(—

(so we can suppose that 0 < g(x,y,7) < (27tt)7% everywhere) and
PP(B)(x) = /B q(x,y:1) dy,

for every x € R?, B € B(RY) and ¢ > 0; so in particular we have that the associated semigroup has
the form

S f(x) = /Q FO)ax.y.) dy

for every f € L*(D,.£%), t > 0; hence the ¢ is the kernel associated to this absorbing Brownian
motion.

Now, we have that S, can be extended to a semigroup on the complexification Z of L*(D, £?),
and it has the same kernel g; (Wo1 ‘Z(D,.,Sfd ),D) can be easily extended to a closed sesquilinear
form (D(b),b) on Z; it is a closed continuous sesquilinear form, so we can apply the Proposition
1.1.19, and we have that S; is bounded holomorphic; hence, by (1.3.6) we are in the hypotheses of

Proposition 1.1.21, and we can deduce this result.

PROPOSITION 1.3.18. In this setting, for D C R%, D open, the transition function has a kernel
q which, for every k € N, is k-times differentiable in t and there exists C,c > 0 s.t.
ak

B cle—yl?
St < hexp (<)

for every x,y € D andt > 0.

1.3.5. Bessel process. Let
B = (‘Aa 97 {Bf}tG[O,er] ) {‘ux}xe]Rg ’ {f%‘}te[o,Jroo])

be a d-dimensional standard Brownian motion (as a Markov process). We have that the sample
path is almost surely continuous for every starting point x, so it is not restrictive to suppose that
the sample path are continuous for every @ € A.

Fixed x, we can define {B, },c[o 1| a Brownian motion (stochastic process) in d dimension
with starting point x € R on a probability space (A,.7,u) (U = 1,). The Bessel process R, in
dimension d with starting point r = ||x|| associated to B, is the stochastic process on the same
probability space with values in R given by R, (a) = ||B;(a)|| for every a € A.

We have this Lemma (see e.g. [47], Prop. 3.21) .

LEMMA 1.3.19. Let d € N, d > 2, r > 0. If R; is the Bessel process in dimension d on
(Q,.7, 1) with starting point r, there exists a standard one dimensional Brownian motion S; on
(Q,.7, 1) with starting point 0 s.t. almost surely
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t

2R,
0
In particular, let M,t >0, and @ € Q s.t. Ry > M, for every s € [0,t], we have

R i=r+

d—1
Ri(0) < r+it—m+5i().
We have this result, which proof is a modification of the proof of ([46], Proposition 3.1).

LEMMA 1.3.20. In the above setting, if x is the starting point of the Brownian motion, if A is
a ball of center y € R? (with |x — y| = r) and radius a < 1, then, for some ¢ > 0 independent of x,

y, a and u,
U(E,) <c A
\/;t a

for every u >0, where E, := {® € A|ft € [0,u] s.t. B/(w) €A} and r = ||x—y| —a.

PROOF. Let 7 be the hitting time of A (we consider the Markov process); by 1.3.14, 7 is a
stopping time, in particular
E,={ocAlt(w) <u} € F
If B; is the Brownian process with starting point in x, if we define R, = ||B; —y|, it is a d-
dimensional Bessel process with starting point ||x — y||; now (by arguing as in [[46], Lemma 3.1]
with ||x —y|| — a instead of g(x) and a < 1 instead of §) we have that Lemma 1.3.19 yields the
existence of a 1-dimensional Brownian process S; starting at 0 s.t.

d—1
E,={wc A iféf]‘R,( )| >a] C{w e QR(w) < |x— y||+Tt+S,( ) forall 7 € [0,u]},
te[0,u
hence

d—1
{we A| 1%f]R,( )>a} C{weQla< Hx—yH—int—i—St(a)) forallz € [0,u} =: E.
a

We have that E} = N ., E; where I is the collections of sets s.t., for some {t1,...,t,} C QN [0,u]

d—1
a < x—y|+ 51+ 8, (0)

for every n: this because A was chosen s.t. the sample path are always continuous; so I C .% and
hence E} € 7.
We have r > 0 because x € Q; we consider the hitting time defined as

d—1
(@)= inf 4 (4L <
wr(®) ,61{5,04{( 2a HS’((O)) = r}

for every o € Q; & 1t+ S; is a process called 1-dimensional Brownian motion with drift; by the
formulas [19], Part II Section 2,(2.0.2( and (2.0.2)(1) we have

H(Ey) = (7 € (u,+00)) + (T = +o0) =

2
= (r+ %) d—1 d—1
= ——2C Ndt+1l—exp | ———r—|—=—1] | <
/u V2n3 exP( 2 Floexp| = ol ) <

(by expz < 1 for z <0, and by 1 —exp(—s) < s for s > 0)
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<! /wtidwd_l <
r
T N2T s a B

< r N r
el —+ 2
— \Vu a
for some ¢ > 0 independent on r,u,a. O

LEMMA 1.3.21. In the above setting, if d > 2, if x is the starting point of the Brownian motion,
if A is a ball of center y € R? (with ||x — y|| = r) and radius a < 1, then,
2—d
a
We(E) = 2

where E .= {® € A|3r € [0,4) s.t. s.t. Z(w)) €A} and r:= ||x—y| —a.

PROOF. It is not restrictive to suppose y = 0; so, ||B;(a) —y|| is, as we said, a Bessel process
with starting point ||x —y||. So, let 7 the hitting time for R of the ball centered in 0 with radius a.
We have

E = [T < +o9],
so, we can apply the formula for the hitting time of Bessel process ([19], Appendix 1, Part II, Cap
4, formula 2.0.2 (1)), and we immediately conclude. O






CHAPTER 2

Wiener spaces

In this Chapter 2, we recall a great part of the theory of Gaussian measures, which allows to
define Wiener spaces; knowing the measure theory, this Chapter is self-contained. The topic of
differentiation in Wiener spaces is left to Chapter 3.

The main reference here is [14].

Sections 2.1 and 2.2 define the basic concepts and properties of Gaussian measure; in Section
2.3, we introduce the concept of (abstract) Wiener space which can be seen as a generalization
of the classical Wiener space, and, in this work, it is actually a separable Banach space endowed
with a Gaussian measure; hence we recap the concepts which will be used later; in Section 2.4 we
introduce the cylindrical functions and the cylindrical approximations, in the setting of Gaussian
measures.

Section 2.5 introduce a particular case, that of a Wiener space which is a Hilbert space; it will
be used in Subsection 2.6.3 and later in the Example 2 in Subsection 7.3.2.1.

Section 2.6 introduces the Brownian motion, not as Markov process, but as classical Wiener
space, which is essential in Chapter 8; by analogy we introduce, in Subsection 2.6.3, the concept
of Brownian bridge, which will be used in the Example 2 in Subsection 7.3.2.1.

2.1. Gaussian measures

2.1.1. Gaussian measures in finite dimension. We recall that, for every ¢ € R and 6 > 0

1 (x—a)? B
2.1.1) - 2E/Rexp{—262}dx—l.

DEFINITION 2.1.1. Gaussian measures on R A probability measure vy on (R, B(R)) is called
Gaussian if it is either a Dirac measure 8, at a point a (in this case, we put o = 0), or a measure
absolutely continuous with respect to the Lebesgue measure Ay with density

1 { (x—a)? }
expy — .
ovam T 207
In this case we call a the mean, 6 > 0 the mean-square deviation and 6 the variance of y and we
say that vy is cenetred or symmetric if a = 0 and standard if in addition ¢ = 1.

By elementary computations we get

a:/ny(dx), GZZ/R()C—a)ZY(dx).

REMARK 2.1.1. For every a,0 € R we have 9(§) = eias—30%E?

measure on R is Gaussian iff its Fourier transform has this form.

Conversely, a probability

DEFINITION 2.1.2. Gaussian measures on R¢ A probability measure ¥ on R is said to be
Gaussian if for every linear functional / on R? the measure Yo/~ ! is Gaussian on R.

39
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¥l = (2m)~/ 26—¥$ 4 is called the standard Gaussian measure. We denote by G, the func-
tion defined as R
Ga(x) := (2m) /%%
the standard Gaussian density in RY, i.e., the density of y? with respect to .Z“.

REMARK 2.1.3. If d = h+k (d,h,k € N) then y? = y" @ 7~

PROPOSITION 2.1.4. A measure y on R? is Gaussian if and only if its Fourier transform is
. : 1
(2.12) 7&) = exp{ia-& 508 £

for some a € RY and Q a nonnegative symmetric d x d matrix. Moreover, Y is absolutely continuous
with respect to the Lebesgue measure Ay if and only if Q is nondegenerate. In this case, the density

of vis

2.1.3) !

|
g 2@ b))

REMARK 2.1.5. If 7y is a Gaussian measure and (2.1.2) holds, we call a the mean and Q
the covariance of y. If a = 0 we say that ¥ is centered. If the matrix Q is invertible then the
Gaussian measure is said to be nondegenerate. Its density, given by (2.1.3), is denoted G, o. The
nondegeneracy is equivalent to the fact that yol~! <« Z! forevery I € (Rd ) .

PROPOSITION 2.1.6. Every centered Gaussian measure y on R? is invariant under the rotation
map ¢ defined, for every 8 € R, by ¢ : R x R — R? by ¢(x,y) := xsin @ +ycos 8; then, the image
measure (YR7y)o¢ ' in R is y.

REMARK 2.1.7. The property stated in Proposition 2.1.6 is not the invariance of y under
rotations in R?; the last is true only if the covariance of yis A0 where A > 0 and O is an orthogonal
matrix.

2.1.2. Gaussian measures in infinite dimension.

DEFINITION 2.1.8. For X vector normed space, the o-algebra &(X) is that generated by the
cylindrical sets, i.e., the sets of the form

c={xeX: (AW, fulv) o},
where f1,...,f, € X* and Cy € B(R"), called a base of C.

THEOREM 2.1.9. If X is a separable Banach space, then &(X) = B(X). Moreover, there is
a countable family F C X* such that for every pair of points x =y € X there is f € F such that

) # f(y) and &(X) = &(X, F).

DEFINITION 2.1.10. [Gaussian measures on X] Let X be a Banach space. A probability
measure ¥ on (X,B(X)) is said to be Gaussian if yo f~! is a Gaussian measure in R for every
f € X*. The measure ¥ is called centred (or symmetric) if all the measures yo f~! are centered
and it is called nondegenerate if for any f # 0 the measure yo f~! is nondegenerate.

REMARK 2.1.11. We will use only separable Banach space in this work, but the definition
of Gaussian measure usually is given for more general spaces, locally convex or Fréchet (see e.g.
[14]).
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Gaussian measures in infinite dimensions can be defined in terms of Fourier transforms, anal-
ogously to the case R?, (Proposition 2.1.4).
Notice that if f € X* then f € L”(X,y) for every p > 1: indeed, the integral

s = [ croyan
is finite because yo f~! is Gaussian in R. Therefore, we can give the following definition.

DEFINITION 2.1.12. We define the mean ay and the covariance By of y by

(2.1.4) /f

@.15) By(f.g) = / LF(0) — ay ()] [gx) —ay(g)] ¥(dh),

fgeX®.
Observe that f +— ay(f) is linear and (f,g) — By(f,g) is bilinear in X*. Moreover, By(f, f) =
”f_ay(f)Hiz(X#) > 0 forevery f € X*.

THEOREM 2.1.13. A Borel probability measure 'y on X is Gaussian if and only if its Fourier
transform is given by

N . 1 X
(216) Y(f):exp{la(f)_EB(faf)}a fGX )
where a is a linear functional on X* and B is a nonnegative symmetric bilinear form on X*,

As in the finite dimensional case, we say that Y is centered if a, = 0; in this case, the bilinear
form By is nothing but the restriction of the inner product in L*(X,7) to X*,

2.1.7) /f Ydx),  By(fif) = 1wy

PROPOSITION 2.1.14. Let X be a Banach space and let 'y be a Gaussian measure on X.

1) If W is a Gaussian measure on a locally convex space Y, then yQ U is a Gaussian measure
onX xY.
1) If W is a Gaussian measure on X, then the convolution measure yx [, defined as the image
measure in X of Y® W on X x X under the map (x,y) — x+y is a Gaussian measure and
is given by

(2.1.8) (y=u)( /uB x)y(dx) = /)/B x)u(dx).

iii) If y is centered, then for every 6 € R, given Rg : X x X — X x X, Rg(x,y) := (xcos0 +
ysin@, —xsin 0 + ycos 0) the image measure (YY) ORe_] nXxXisy®y.
iv) If v is centred, then for every 0 € R the image measures (Y®7Y) o q)l._l, i=1,2in X under
the maps ¢; : X x X — X,
O1(x,y) :=xcos0 +ysin@, @(x,y) := —xsin6 +ycosO
are again .

We recall that &'(X) = B(X); we give a definition of measurable seminorm inspired by ([14],
Def. 2.8.1).
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DEFINITION 2.1.15. If X is a Banach space and y is a Gaussian measure on X, a &(X)y-
measurable seminorm is a function f Borel measurable on X s.t. there exists a linear subsets
Xo € B(X) s.t. y(Xo) = 1 and fly, is a seminorm on Xo.

We have this important result, the Fernique Theorem ([14], Thm. 2.8.5; Fernique theorem was
introduced in [40]).

THEOREM 2.1.16. Let y be a centered Gaussian measure on a Banach space X, and let | -| be
a &(X)y-measurable seminorm of X. Then there exists o. > 0 such that

/ exp{ot|x|?} y(dx) < oo.
X

If X is a Banach space, it is easily seen that the space X* is contained in L?(X,7) and the
inclusion map j: X* — L*(X,7),

(2.1.9) i =f-alf), fex'

18 continuous.

DEFINITION 2.1.17. [Reproducing kernel] The reproducing kernel is defined by the closure
of j(X*)in L*(X,y), we denote it by X;.

We have defined the functions a, in X* and the function By in X* x X*; the extension of a, to

X, is trivial, since the mean value of every element of X, is zero. The extension of By to Xy x Xy

is continuous (X; x Xy is endowed with the L*(X,y) x L*(X,7) norm), and since ay = 0 on X5,

By(f.g) = /X FO8@)7(dx) = f.8) oy, 8 X

If v is nondegenerate then two different elements of X* define two different elements of X;,.
We have also this result.

PROPOSITION 2.1.18. If'y is a Gaussian measure on a separable Banach space X, then ay :
X* =R and By : X* x X* — R are continuous. In addition, there exists a € X representing ay,
i.e., such that

ay(f)=fa), VfeX"
If v centered then a = 0.

For f € X7, we have that | f| is a £(X),-measurable seminorm by e.g. [14] Thm. 2.10.9, so by
the Fernique Theorem (Theorem 2.1.16) we have this Corollary.

COROLLARY 2.1.19. If f € X, then there exists ¢ > 0 s.t.
/ exp (c|g|2) dy < eo.
0

2.2. The Cameron-Martin space

Hereafter, we assume that X is a separable Banach space.
We define the operator Ry : X5 — (X*)".

@2.1) Ryf(g) = / FO)(8() —ay(g) ¥(dx),  fEX], g€ X",
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1.e.
(2.2.2) Ryf(g) = <f7g_aY(g)>L2(X,y)-
We recall that R, maps X;,‘ into X (see [14, Theorem 3.2.3]).

PROPOSITION 2.2.1. If X is a separable Banach space, the range of Ry is contained in X, i.e.,
for every f € X there is y € X such that Ryf(g) = g(y) for all g € X*.

REMARK 2.2.2. By Proposition 2.2.1, we can identify Ry f with the element y € X represent-
ing it, i.e. we shall write

Ryf(g) =g(Ryf), VgeX".

DEFINITION 2.2.3. [Cameron-Martin space] For every h € X set
(223) o = sup{ F0) 2 £ € X ()l <1

where j: X* — L?(X,7) is the inclusion defined in (2.1.9). The Cameron-Martin space is defined
by

(2.2.4) H:= {h EX: |y < oo}.

If X is a Banach space, calling ¢ the norm of j : X* — L?(X,y), we have
(2.2.5) [1hllx = sup{f(h) : [[fllx- <1} <sup{f(h): lj(zexy <c}=clhla,

and then H is continuously embedded in X.

This embedding is even compact and the norms || - ||x and |- |z are not equivalent in H, in
general; they are equivalent only if X is finite dimensional and ¥ is non-degenerate.

The Cameron-Martin space inherits a natural Hilbert space structure from the space X, through

the L?(X, ) Hilbert structure.

PROPOSITION 2.2.4. An element h € X belongs to H if and only if there is he Xy such that
h= Ryfz. In this case,

(2.2.6) Bl = (|l r2x )-

Therefore Ry : Xy — H is an isometry and H is a Hilbert space with the inner product
[h,kly = <il,f<>L2(X,y)

whenever h = RylAz, k= RylAc.

For every h € Ry(X;) there is only one he X, which satisfies the above condition; hereafter,
we will always use the formalism * in this way.

The space L*(X,y) (hence its subspace X, as well) is separable, because X is separable. There-
fore, H, being isometric to a separable space, is separable.

REMARK 2.2.5. The map Ry : X, — X can be defined directly using the Bochner integral
through the formula

Ryf = / (= a) £(x) 7(dh),

where a is the mean of 7.
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Now we describe the finite dimensional case X = R¢. If y = .4 (a,Q) then for f € R? we
have

) oy = [ lr=as A 0.0) ) = (OF 1

and therefore ||y is finite if and only if # € Q(R?) and, as a consequence, H = Q(R?) is the range
of Q. According to the notation introduced in Proposition 2.2.4, if y is nondegenerate, namely
Q is invertible, i = Ryl iff h(x) = (Q~'h,x)ga. if ¥ is nondegenerate the measures ¥, defined by
7:(B) = y(B — h) are all equivalent to ¥, and an elementary computation shows that we have

_ 1 A 1
pu(x) i=exp{ (@) -x— 5|} = exp{hx) — S 1h .
where Y, := pp7. In the next theorem, we consider the infinite dimensional case.

THEOREM 2.2.6. For h € X, define the measure y,(B) := y(B—h). If h € H the measure YV, is
equivalent to y and Y, = pyY, with

A 1
2.2.7) pn(x) == exp{h(x) - E'h’%’}’
where h :Rjjlh. Ifh ¢ H then y, L y. Hence, y, = v if and only if h € H.

From now on, we denote by B (x, r) the open ball of center x € H and radius r in H and by
EH(O, r) its closure in H. We denote by x+§H(0, r)forxeX,

Br(x,r) ={y € X[ly—x|u <r}.

THEOREM 2.2.7. Let ¥ be a Gaussian measure in a separable Banach space X, and let H be
its Cameron-Martin space. The following statements hold.

i) The unit ball BH(0,1) of H is relatively compact in X and hence the embedding H — X
is compact.
ii) If y is centered then H is the intersection of all the Borel subspaces of X with measure 1.
iii) If v is centered and Xy is infinite dimensional then y(H) = 0.
iv) There exists an orthonormal basis of H that is contained in Ry(X*).

PROPOSITION 2.2.8. Let 'y be a Gaussian measure on a Banach space X. Let us assume that
X is continuously embedded in another Banach space Y, i.e., there exists a continuous injection
i:X — Y. Then the image measure ¥y :=Yyoi~ ' inY is Gaussian and the Cameron—Martin space
H associated with the measure 7 is isomorphic to the Cameron—Martin space Hy associated with
the measure Yy in'Y.

2.3. Notations about Wiener spaces

Hereafter, we will call abstract Wiener space, or Wiener space, a space (X,y) where X is a
Banach space and 7 is a centered nondegenerate Gaussian measure.

In the sequel, we will write L”(X) to mean L?(X,7); if Y is a normed space, we will write
LP(X,Y) to mean LP(X,7,Y).

By using Theorem 2.2.7 iv) we can consider a basis {4;};cy of H s.t. for every j € N we have
h; € X*,and h; € Ry(X*). We define

d
(2.3.1) X = Zﬁj(x)hj, neN, xeX.
j=1
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Note that every 7, is a projection, since by (2.2.1) fi;(h;) = §;;. Moreover, if x € H, then h;(x) =
[x,hj]i 80 max is an extension to X of the orthogonal projection of H on < hy,...,hg >.

More in general for every F C Ry(X*) C H, with dim(F) = d < oo; for every h € F we can
consider i € X*; in this setting, we define h as the bounded linear function (defined everywhere,
and non only almost everywhere) which corresponds to A.

If (hy,...,hq) is a an orthonormal basis of F, we define

d
JTF(X) = Z fzj(x)hj
j=1

function from X to F', and we that this function is linear and continuous and it does not depend on
the orthonormal basis; we can consider it a the extension to X of the projection from H to F.

In this setting, we consider the measure ¥ := Yo7 I we have that y is a centered nondegen-
erate Gaussian measure on F; if we identify F with R?, by identifying an orthonormal basis of F
(inner product inherited from H) with the canonical basis of R?, then ¥ is the standard Gaussian
measure Y. For such a F we can define

Fhi=mp(0) = (1— )~ (X)),

it is a closed set (hence it is a Banach space). We remark that F~ is a subset of X, not of H; we
remark also that F- is well defined as close linear subset of X for F C R,(X*, but not in general
for F CH.

If F C Ry(X™), if we consider I — 7y as a linear map from X to Xr, then we can define

Vi ==yo(Il—m)”!

as a measure on F1; it is a centered nondegenerate Gaussian measure, and the Cameron-Martin
space of (Xr, ¥#) is the orthogonal F* to F in H; on F x F1, if F x F* corresponds to X through
the function (v, w) — v+ w, we have that in this setting y is given by the product measure yr ® Yp. .
When F =< h >, we will write & to mean < & >1, 1, := Vops, Yo 1= Yepol-
For h € Ry(X*), y € X;-, we will usually define Oy := {t € R|y+th € O}, and the function f,
on Oy defined as f,(t) := f(y+th).

2.4. Cylindrical approximations in Wiener spaces

DEFINITION 2.4.1. [Cylindrical functions] We say that ¢ : X — R is a cylindrical function if
thereared € N, [1,...,l; € X* and a function y : R” — R such that ¢(x) = y(/;(x),...,l;(x)) for
all x € X. For k € N, we write ¢ € FCX(X) (resp. ¢ € FC;°(X)), and we say that @ is a cylindrical
k times (resp. infinitely many times) boundedly differentiable function, if, with the above notation,
v € CK(RY) (resp. y € C(RY)).

In the notations of 2.3 we have the following theorem, see e.g. [14] Thm. 3.5.1, Cor. 3.5.8.

THEOREM 2.4.2. For every p € [1,+4o0),

LX)

— —0.
=l

For y-a.e. x € X, lim myx = x.
n—oo
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We define
(Eaf) () := / Fraxt (- m)y)ydy), x€X,

clearly if f € C¥(X) then E;f € FCL(X); the functionsE, f is called cylindrical approximation of

f and it is the conditional expectation of f with respect to the c-algebra 1, ' (B(F)).
We have this result ( see e.g. [14] Cor. 3.5.2).

PROPOSITION 2.4.3. Forevery 1l < p <eand f € LP(X,7) the sequence E, f converges to f
in LP(X,v) and y-a.e. in X.

It has the following corollary.
COROLLARY 2.4.4. For every 1 < p < co the space FC};(X) is dense in LP (X, 7).

Now, if F C Ry(X *), for every h € F the function he X;,‘ in general is not in X*; we have
that it is not continuous, but it has a (not unique) representative which is measurable and linear
on X (but, in general, not bounded); so, for a sequence F; generated by an orthonormal basis we
can define 7m; analogously as a measurable linear functional, and E,; f; also in this case for y-a.e.
xeX, C}gn max = x, while E; f converges to f in L”(X,y) and y-a.e. in X.

2.5. Hilbert space case

Let X be an infinite dimensional separable Hilbert space, with norm || - ||x and inner product
(-,-)x. We identify X* with X via the Riesz representation.

We say that an operator L € £(X) is nonnegative if (Lx,x)x > 0 for all x € X; an operator
L € £(X) is compact if the image of every bounded set is relatively compact.

We also recall that an operator L € £(X) is compact if (and only if) L is the limit in the operator
norm of a sequence of finite rank operators.

Let us recall that if L is a compact self-adjoint operator on X, the spectrum of L is at most
countable and if the spectrum is infinite it consists of a sequence of eigenvalues {A; }xcny Which
converges in 0. If L is compact and self-adjoint, there is an orthonormal basis of eigenvectors of
X. Moreover, L has the representation

2.5.1) Lx=
k

Ak<x,€k>x, XEX,
=1
where {ey }ren is an orthonormal basis of eigenvectors and Ley, = Agey for any k € N. If in addition
L is nonnegative, then its eigenvalues are nonnegative.
We may define the square root of L by

L'2x = Z lkl/2<x, €)X Ck-
k=1

The operator L!/2 is obviously self-adjoint, and also compact.
It can be proved that

oo

~+oo
T .= Z(Lek,ek>x = Z A < +oo
k=1 k=1

(where {e; }ren is an orthonormal basis of eigenvectors) is well defined for every L compact and
self-adjoint; therefore, we can give the following definition.
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DEFINITION 2.5.1. [Trace-class operators] A nonnegative self-adjoint operator L € £(X) is
of trace-class or nuclear if there is an orthonormal basis {e; : k € N} of X such that

gk

<Lek, ek>x < o

k=1

and the trace of L is
(2.5.2) tr(L) ==Y (Lex,ex)x
k=1

for any orthonormal basis {e; : k € N} of X.

For a complete treatment of the present matter we refer e.g. to [32, VL.5], [33, XI.6, X1.9].
Let v be a Gaussian measure in X. According to Theorem 2.1.13 and (2.1.4), (2.1.5) we have

) =exp{iar( )~ 35BS}, FEX

where the linear mapping a, : X* — R and the bilinear symmetric mapping By : X* X X* — R are
continuous by Proposition 2.1.18. Then, there are a € X and a self-adjoint Q € £(X) such that

ay(f) = (f,a)x and B(f,g) = (Qf,g)x for every f, g € X* =X. So,

(253) <vag>X:/)(<f7x_a>x<g7x_a>XY(dx)7 f7 gGX,
and

1
(254) 7 =exp{ilf.ax—5(Qf flx}. feX.

We denote by .4 (a,Q) the Gaussian measure Y whose Fourier transform is given by (2.5.4). As
in finite dimension, a is called the mean and Q is called the covariance of 7.

The following theorem is analogous to Theorem 2.1.13, but there is an important difference.
In Theorem 2.1.13 a measure is given and we give a criterion to see if it is Gaussian. Instead, in
Theorem 2.5.2 we characterize all Gaussian measures in X.

THEOREM 2.5.2. If v is a Gaussian measure on X then its Fourier transform is given by
(2.5.4), where a € X and Q is a self-adjoint nonnegative trace-class operator. Conversely, for
every a € X and for every nonnegative self-adjoint trace-class operator Q, the function § in (2.5.4)
is the Fourier transform of a Gaussian measure with mean a and covariance operator Q.

REMARK 2.5.3. Since in infinite dimensions the identity is not a trace-class operator, the
function x — exp{—%||x[|¥ } cannot be the Fourier transform of any Gaussian measure on X.

PROPOSITION 2.5.4. Let y= A (a,Q) be a Gaussian measure on X and let (A) be the se-
quence of the eigenvalues of Q. If ¥ is not a Dirac measure, the integral

/ exp{at|x|3} ¥(d)
X

is finite if and only if

. 1
(2.5.5) o< mf{%( s A > O} )
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Let us characterize X, and the Cameron-Martin space H. By definition, X is the closure

of j(X*) in L*(X,y). Hereafter, if y = .4 (a,Q) we fix an orthonormal basis {e; : k € N} of
eigenvectors of Q such that Qe, = Aiey for any k € N and for every x € X, k € N, we set x; :=
<X, €k>X~

THEOREM 2.5.5. Let Y= .4 (a,Q) be a nondegenerate Gaussian measure in X. The space

. -
X}, is

(2.5.6) {f X>R: ZeX st f(x) Zxk—ak Jaidy, /2}
and the Cameron-Martin space is the range of Q'/?, i.e
2.5.7) H={xex: ¥ fi " <el.

k=1

Forh = Ql/zz € H, we have

(2.5.8) hx) =Y (u —a)zd,
k=1
and
(2.5.9) [hKlg = (Q7?h,07?k)x  VhkeH.

2.6. Brownian motion and classical Wiener space.

2.6.1. One-dimensional Brownian motion. We consider C(]0, 1]) as a metric space with the
sup norm. It is possible to prove (see [14], Sec 2.3, and [54]) that there exists a centered Gaussian
probability Y on C([0, 1]) s.t. the family of functions B, : C([0,1]) — R defined by

B/(w) = o(1), 1 €[0,1]

represents a real valued standard Brownian motion if we consider each B; as a random variable on
(€((0,1]),y )

Clearly ¥ concentrates on C,([0,1]) = {® € C([0,1])|@(0) = 0}.

vV is called classical Wiener measure on C,([0,1]), it is nondegenerate and centered. The
(Borel) measure space (C.([0,1]),y") is called classical Wiener space.

Every standard Brownian motion B; on (Q,.%, i) has a version B; that is y-H6lder continuous
for every y < %; hence, there exists a set A € .# with u(A) = 1 and a version (§t>te[0, 1) such that
the map ¢ — B;(®) is continuous for any ® € A.

v" is a Gaussian measure with mean zero and covariance operator

(2.6.1) Byw(u,v):/[0mmin{t,s}(u@v)(d(t,s)), wve.#(0,1)).

We consider the embedding t : C([0,1]) — L?(0, 1), 1(f) = f, which is a continuous injection
since

1L (20,1 < [1f oo
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We consider the image measure ¥y := 7" o1~! on L?(0, 1); clearly %y concentrates on the space
Z, of elements of L*([0, 1]) which have a continuous representative; we have that the Cameron-
Martin space on (C([0,1]),7"), and on (L*(0, 1), %y,) is the same in the sense of Proposition 2.2.8,
and it is given by
Hy([0,1]) :={f € L*(0,1) : /' € L*(0,1) and f(0) = 0}.
L2([0,1]) is a Hilbert space, so we can consider eigenvalues and eigenvectors: the eigenvalues are
1
(2.6.2) M= —s, ke N
w2 (k+13)

and the eigenvectors are

ex(x) = \@Sin( a ) = ﬂsin(2k+ ! nx).
Vi 2
2.6.2. d-dimensional Brownian motion. Let X := {® € C([0,1],R%)|®(0) = 0}, we can see
itas X = C,([0,1]) x ... x C([0, 1]) d times, if we define Y"¢ = " @ ...® 9" d times (where y"
is the measure of classical Wiener space, associated to the standard Brownian motion), we have
that it is a nondegenerate Gaussian measure (recalling that the product of Borel c-algebras is the
Borel o-algebra).

DEFINITION 2.6.1. A d-dimensional Brownian motion on [0, 1] is a d-dimensional stochastic
process (B;);[o,1] on a probability space (€, %, 1) such that, for every i € (1,...,d), the process
(By); is a standard real valued Brownian motion.

It is immediate that given "¢ on X, the family of functions B.(-) : [0, 1] x X — R? defined by
Bi(0)=w(r),  1€]0,1]
is a d-dimensional Brownian motion on (X, y"?).

2.6.3. Brownian bridge. Let B, a real valued standard Brownian motion 7 € [0, 1] on the
space (Q,.%, 1t); then, the process given by B = B; —tB; on the space (,.%, 1) is called Brow-
nian bridge ; we have that B) = 0 and B(l) = 0 almost surely i.e. if

A= {0 € Q|Bj(») = B} () = 0}
then A € . and u(A) = 1. It is well known that, if 7 € [0, 1] then
E(B? ) =0,
and if 5,7 € [0,1] then
cov(B? BY) = (s At) —st.

We consider the case of (C,([0,1]),7"), classical Wiener space; we define the bounded linear
function y : C([0, 1]) — C([0,1]),
v(f)(@) = fe) =t (1),
and we define the pinned Wiener measure y"? := ¥ o y~! that is Gaussian, centered and it
imposes that the values on 0 and 1 are 0: clearly the family of functions B : C([0,1]) — R defined
by
B(0)= o), 1e[0,1]
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corresponds a Brownian bridge, and clearly it concentrates on the closed linear subspace Cy ([0, 1])
(so Y"P is degenerate as a measure on C([0, 1]), because C([0, 1]) # Co([0, 1])).

If Y = C([0,1]) then Y* = .# ([0, 1]), where .# (|0, 1]) is the set of real finite Borel measures
on [0, 1], with the weak* topology (by the Riesz-Markov Theorem 1.2.18).

Now, if s,z € [0,1], if J;, 5, are Dirac probabilities concentrated respectively in s and 7, then
we have

B (5.6, / 5(0 WD (g9) = /X o) (s) Ay () =
= E(B’BY) = E(B"B°) —E(BY)E(B®) = cov(B®,B%) = (s A1) —st.

Hence, by the continuity of B,w, we can write that, if u, v are linear combinations of Dirac mea-
sures,

1 1
(2.63) B (1, v) = /0 /0 (s A) —st)u(ds)v(dr):

but these measures are dense in the weak™ topology (see e.g. [16] Exa. 8.1.6 i), by recalling that
Borel sets and Baire sets are the same in a metric space) and Byw, is continuous, so (2.6.3) is
verified also for generic elements of . ([0, 1]).

We remark that two functions fi, > € L'([0,1]) can be seen as density of measures (with
respect to Lebesgue measure .#’!), and in that case we can write

1 1
(2.6.4) Bpr(fl-i”],fz-fl)Z/o /o ((sAt) —st)fi(s)fa(t) dt ds.

As in the above case, we can consider the embedding t : C([0,1]) — L?(0,1), t(f) = f; we can
define on L%(0, 1) the measure %y, = y"Po17!.

Let X = L*([0,1]) (hence a Hilbert space, see Section 2.5). Clearly, %y, is well defined in X
and concentrates on the space Z of elements of L?([0,1]) which have a continuous representative;
we already know that Yy is well defined in X (and it concentrates on Z,) and that is a nondegenerate
centered Gaussian measure with Cameron-Martin space

Hyw = {f € W"2([1,2])|f has a continuous representative f with £(0) =0, f(1) = 0},

dense in X (see [14] Lem. 2.3.14); moreover, ¥ is well defined in Z; and ¥, = ¥y © v, s0 Ywp
on X is a centered Gaussian measure with Cameron-Martin space

Hyp = Y(Hw) = Wy ?((0,1))

(it is clear, because Y(Hw,) = Hw, and y(Hy) C Hy,) hence Y is nondegenerate because Yy, is
dense in X.

We have that X* = L?([0,1]) and we can consider the function i* : X* — Y* as i*(f) = f.£".
Now, for what we said, by using (2.6.4) we can calculate the covariance By, , for f1, f» € X: itis
given by

1,1
B, (if2) = [ [ (A0 = s ()120) i ds:
0o Jo
if A is an eigenvalue of Q and f; is an eigenvector, then

By (f,8) = (A f2:8)12(0.1)
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for every g € L*([0, 1]), so

t 1
Afi(t)=(1-1) /0 S(s) ds+t / (1) fi(s) ds,

hence . X
Afy(t) = —/0 sf(s) ds—l—/t (1—=s5)fa(s) ds
and
(2.6.5) Af(t) = folt)
and clearly
(2.6.6) f2(0) = f1(1) =0;

if we take A = (7k) =2 and e; := f;, = V2sin(k7-), clearly {e; }ren is a basis of eigenvectors of
Q: in fact, each solution of the ODE (2.6.5) is of the form

fa=osin(Axn-)+ Bcos(Am-)
and if we want to satisfy the boundary conditions (2.6.6), we need B = 0, and A = (k)2 for
some k € N; this is to prove that only the elements of {e }rcn are eigenvectors; now, it is clear that
{ex }ren is a basis of Hy,, hence that set is the set of eigenvectors of Q.
Now, for each e, we have leillizgony = \/A4; this yields that H = Wol’z((O, 1)) and, for every

HekHLZ([oAl])
h € H, that |h|y = ||h/”L2([O,l])'

In particular, a orthogonal basis of eigenvector of H is {\@I(1 n!

sin(kn-)}keN.






CHAPTER 3

Sobolev space in Wiener spaces

This long Chapter recalls several topics about differentiation in Wiener space: except Section
3.3, they are all well-known.

(X,7) is always a Wiener space: we use the definitions and properties introduced in Chapter
2 (especially Section 2.3).

In Section 3.1 it is presented the notion of Sobolev spaces of the first order in a Wiener space
X (see [14]).

In Section 3.2 we give a definition of Sobolev space W!(0) as completion of Lipschitz
functions (it is one of the possible definitions, it is used in [26]); we define an alternative Sobolev
space WP (0), and we recall a result in [44] which allows to state that, for O convex, W'2(0) =
W,}’Z(O); Proposition 3.2.23 allows to introduce Corollary 3.2.24, which states that each element

of <W*1’p ﬂLq> (O) can be approximated by regular functions; Proposition 3.2.23 and Corollary

3.2.24 are used in Chapter 7.

In Section 3.3, Proposition 3.2.23 is proved, following the same steps of the result in [44].

In Section 3.4, we define concepts linked to second derivatives: the space W>? (which is used
in Section 3.5) and the Gaussian divergence div,. The definition of Ornstein-Uhlenbeck operators
and semigroups (in various settings) is recalled in Subsection 3.4.3 (see Section 1.1 for operators
and semigroups); these concept will be used in Section 4.1, and also in Subsection 7.5.3.

In Section 4.1 we recall the theory of infinite dimensional Hausdorff measures (introduced by
D. Feyel and A. de La Pradelle) following [39]; we recall that, by following [26], a particular kind
of sets (which satisfies Hypotheses 3.5.8 and 3.5.10) allows to define the trace operator on d0, so
in this setting a possible definition of WO1 "(0) is the space of functions with null trace; this will be
used in Chapter 6. To define the necessary conditions on the set O, we use the concepts of Section
3.4.

3.1. Sobolev spaces W'7(X)

3.1.1. Differentiable functions. For this subsection we refer to [14]. We will use the nota-
tions of 2.3.

In the following, given a Wiener space X, y), we denote L”(X,y) with L?(X) and L? (X, v, H)
with L? (X, H).

DEFINITION 3.1.1. Let X, Y be normed spaces. Let xo € X and let Q be a neighbourhood of
Xo. A function f: Q — Y is called Fréchet differentiable (or simply differentiable) at xq if there
exists [ € L(X,Y) such that

Ilf (xo+h) — f(xo) —L(h)|ly =o(||h]lx) ash—0inX.

In this case, [ is unique, and we set f’(xo) := [.

53
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C 11 (X) will be the set of all the Fréchet differentiable functions bounded s.t. f” is bounded and
continuous as a function X — H.

If f is Fréchet differentiable at xj it is continuous at xo. Moreover, for every v € X the direc-
tional derivative
d xo+1v) — f(x
(T{(XO) ::Y—}i_%f( 0+ z) [ (x0)
exists and is equal to f"(xo)(v).
If Y =R and f: X — R is differentiable at xo, f’(xo) is an element of X*. In particular, if
f € X* then f is differentiable at every xo and f” is constant, with f’(x)(y) = f(y) for every xo,
yEX.If f€FCHX), f(x) = @(li(x),...,L,(x)) with [, € X* forevery k € {1,...,n}, ¢ € CL(R"),
f is differentiable at every xo and

Fx0)) = kz ;’;’;((zl(xox...,zn<xo>>zk<y>, %0,y EX.

Let f be differentiable at x for every x in a neighbourhood of xo: if the function X — £(X,Y),
x +— f'(x) is differentiable at xo, then the derivative is denoted by f”(x), and it is an element of
Z(X,L(X,Y)).

The higher order derivatives are defined recursively, in the same way.

If f: X — R is twice differentiable at xo, f”(xo) is an element of .#(X,X*), which is canoni-
cally identified with the space of the continuous bilinear forms . (?) (X): indeed, if v € .2 (X, X*),
the function X? — R, (x,y) > v(x)(y), is linear both with respect to x and with respect to y and it
is continuous, so that it is a continuous bilinear form; conversely every bilinear continuous form
a:X? — R gives rise to the element v € . (X, X*) defined by v(x)(y) = a(x,y). Moreover,

() )] ja(x,y)]
W) = 0o Tell Il ~ oo Tl Iyl — 100
Similarly, if f : X — R is k times differentiable at xo, f*)(xo) is identified with an element of the
space .2¥)(X) of the continuous k-linear forms.

DEFINITION 3.1.2. Let k € N. We denote by C5(X) the set of bounded and k times contin-
uously differentiable functions f : X — R, with bounded norm sup,y || f)® | L) (x) for every
j=1,... k. Itis normed by

k
I lesery = 2 sup LA G2 xy.

j=0Xx€
where we set f(¥)(x) = f(x). Moreover we set
Gy (X) = () G(X).
keN

Let X, Y be Banach spaces. A function F : X — Y is said Gdteaux differentiable in a point x € X
if there exists a bounded linear mapping from X to Y, called Gateaux differential and denoted by
DF (x) s.t. for every h € X

F(x+th)—F(x)

— — (DF(x))(h).
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Given a linear subspace Z of X, a function F : X — Y is said Gateaux differentiable with
respect to Z or Z-Gateaux differentiable in a point x € X if there exists a bounded linear mapping
from Z to Y, called Z-Géteaux differential and denoted by DzF (x) s.t. forevery h € Z

lim F(x+th)—F(x)
t—0 t

= (DzF (x))(h).

From now on, X is a separable Banach space endowed with a norm || - ||x and with a Gaussian
centered non degenerate measure Y, and H is its Cameron-Martin space.

DEFINITION 3.1.3. A function f: X — R is called H-differentiable at X € X if there exists
lp € H* such that
lfx+h)—f(x)—1l(h)|=o(lhlz) ash—0inH.
If f is H-differentiable at X, the operator /j in the definition is called H-derivative of f at xo,
and there exists a unique y € H such that ly(h) = (h,y(, for every h € H. We set

Vuf(x0) :=.

LEMMA 3.1.4. If f is H-Gdteaux differentiable at xq, then it is H-differentiable at xo, with
H-derivative given by h— f'(xo)(h) for every h € H. Moreover, we have
3.1.1) Vi f(x0) = RyDy (xo).

If f is just H-differentiable at X, the directional derivative ‘3—{(}) exists for every v € H, and it
is given by [V f(X),v]n. Fixed any orthonormal basis {h, : n € N} of H, we set

d
aif(x):= 87{@)’ icN.
So, we have
(3.1.2) Vuf(x) =Y of(x)h,
i=1

where the series converges in H.

3.1.2. whr(X).

LEMMA 3.1.5. For every 1 < p < oo, the operator Vi : D(Vy) = FC;(X) — LV (X, v,H) is
closable as an operator from LP (X ,y) to LP(X,y,H).

DEFINITION 3.1.6. For every 1 < p < oo, the Sobolev space W'(X,y) is the domain of the
closure of Vi : FC;(X) — L (X,y,H) in LP (X, y) (still denoted by V). Therefore, an element
f € LP(X,7) belongs to WP (X, y) iff there exists a sequence of functions f, € FC;7(X) such that
fu— fin LP(X,y) and Vg f, converges in LP(X,y,H), and in this case, Vg f = lim, . Vg f5.

We will usually denote W!?(X,y) with WP (X).

For more details on th prevous definition we refer to [14], Section 5.2.

REMARK 3.1.7. If a subspace E is dense in W!?(X), and we can define Vy on E in a coherent
way, then we can give the above definition with E instead of FC;’(X), and we get an equivalent
definition.

For instance, it is immediate that to ?C; is associable Vy , that it is dense in W 1P (X) (because
it contains FC;’ (X)), so we can substitute it in Definition 3.1.6.
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We have an integration by part formula: for every f € WHP(X), g € Cll, (X) and h € H we have

af
3.13 gdy= d hd
(3.1.3) a8 = /ahf7+/fg 1
In the sequel, we will often deﬁne the *-partial derivatives

g .
T e g, h
and we have that the integration by part formula can be written as

af B
(3.1.4) ahgd / > § ¢y

which corresponds to the usual integratlon by parts formula.

The next Lemma is contained in ([14], Lem. 5.7.7).

LEMMA 3.1.8. If p> l and f € WP, then |Vy f|n = 0 y-almost everywhere in the set f~'(0).
The next proposition is contained in ([14], Prop. 5.4.5).

PROPOSITION 3.1.9. Let 1 < p < oo and let f € W'P(X). Then, E,f € W'P(X) for alln € N

and:
i) forevery j€N
(3.1.5) QJ(IE,,f)_{ 0 ifj>n
i) [Enfllwirey < I lwirex
iii) imE,f = fin WHP(X).
n—yoo
We will use the following definition.

DEFINITION 3.1.10. A real function on Q C X is said H-Lipschitz with constant ¢ > 0 if for
every x € Q, forevery h € H s.t. x+h € Q,

[f(x+h) = f()] < clhln.

Clearly a Lipschitz function on Q is H-Lipschitz (because for some ¢; > 0 we have |||y < c¢i|h|a
for every h € H by (2.2.5)).

We recall this result ([14], Thm. 5.11.2).

THEOREM 3.1.11. Let (X,y) be a Wiener space with Cameron Martin space H; if Q C R is
open and F : Q — X is H-Lipschitz with constant ¢ > 0, then almost everywhere it is Gdteaux
H-differentiable and H-differentiable; moreover y-almost everywhere,

’DHF‘H S C.

REMARK 3.1.12. In [14], Thm. 5.11.2, the argument is done for all X, but it can easily
extended to the case  C X open.

We recall the Lemma (see [14], Prop. 5.4.6 and Def. 5.2.4).

LEMMA 3.1.13. A measurable function F is in WP (X), iff these conditions are satisfied:

i) for every h € H, for y,.-a.e. y € h' there exists f locally absolutely continuous s.t.
F, = f Wy-almost everywhere ;
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ii) there exists a function VyF € LP (X ,H) s.t.
F(x+th)—F(x)

t

tends to 0 in measure y for t — Q.

- <VHF, h>H

REMARK 3.1.14. In [14] the expression "absolutely continuous’ is equivalent to our ’locally
absolutely continuous’ (it follows [3] and [20] I1.4.1.5).

By putting together Lemma 3.1.13 and Theorem 3.1.11, we have this Corollary.

COROLLARY 3.1.15. If F is H-Lipschitz with constant ¢ > 0, then it is in WP (X) with gra-
dient equal to its Gdteaux differentiable y-almost everywhere, DyF = VgF < c. If F is Lipschitz
on O with constant ¢, we have the same property.

Now, by Lemma 3.1.13 and Corollary 3.1.15, we have that Lip,(X) is dense in W!?(X) (be-
cause it contains FC;’ (X)), so by Remark 3.1.7, we have this Corollary.

COROLLARY 3.1.16. The operator Vy : Lip,(X) — LP(X,H) defined by the Gateaux deriv-
ative is closable, the domain of its closure is (isomorphic to) W'P(X), and the closure defines
Vg :WhP(X) — LP(X,H).

The above Corollary yields an alternative definition of the Sobolev space W7; following [26]
et al. we can use this idea to define W'”(0) on an open set O C X, see Section 3.2.

3.1.3. The divergence operator. Let us recall the definition of adjoint operator. If X;, X, are
real Hilbert spaces and T : D(T') C X; — X is a densely defined linear operator, an element v € X,
belongs to D(T™) iff the function D(T) — R, f — (T f,v)x, has a linear continuous extension to
the whole X, namely iff there exists g € X such that

(Tfvix, =(f8)x, [feDT).
In this case g is unique (because D(T') is dense in X;) and we set
g=T"v
Now, let (X, y) be a Wiener space, as usual.

We consider X := L*(X), X, := L*(X,H) and T := Vy. For f € W'2(X), v € L*(X,H) we
have

(T b = | (Tnf )06 dyta)
so that v € D(T*) if and only if there exists g € L?(X,7) such that
(3.1.6) /<VHf(x) X))y Y(dx) = /f dy(x), feW'(X,y).
X
In analogy to the finite dimensional case, we can set
divyy 1= —g

and we call divyv the divergence or Gaussian divergence of v. As FC}(X) is dense in W!2(X),

(3.1.6) is equivalent to
/ (Vi f(x),v(x))y dy(x) = / f(x)g(x)dy(x)
X X

for every f € FC}(X).
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Clearly, for every m € N, the set Lip, ,,(X,H) is contained in the domain of divy, and for
v € Lip, ,,(X,H) we have the formula

oo m
(3.1.7) divyv(x) = Z OV (x) — v (x) Py ( Z OnVn(x) — v (x) B (x))

n=1 n=1
(we recall that, if v € Lip, ,(X,H) then v; = 0 for i > m).

REMARK 3.1.17. Let g € Lip, ,,(O,H) (see Definition 1.2.35), hence g can be extended to

0 out of O, which implies that divyg|x\p = 0, so g,divyg € LP(X) for every p € [1,+o0); if f €
Lip,(0), then it can be extended out of X (for example with McShane extension, see Appendix)
and by the formulas (3.1.4) and (3.1.7)

/ (Vuf.g)ydy= _/ divygfdy;
0 0

clearly, by the definition of W', the above equation is true for every f € W!»(0) for every
€ [1,400).

3.2. Sobolev spaces on O C X open

3.2.1. Llog% L. We recall the theory of Orlicz spaces in infinite dimension (see [42] for the
particular case: it is done for the whole space X, but it remains true for an open subset O; see [1]
for the general case).

We introduce the function on R™

t
Ay (1) = / (log(1+s))? ds,
0
this function is called an N-function.

We say that A 1 satisfies the Aj-condition near infinity: i.e. for some k > 0, fo > 0, for all €

(t9,+o0) we have A s (21) < kA 1 (1 () ast — 0. This is true because 4¢(log(1 +1))2 ~ (log(141))?.
For every p > 1 there exists C >0andR € (0,1) s.t. A%( ) < R\/Ctp for every t > 0 because

there exists R (0 < R < 1) s.t. if # > R then (log(1+1))2 < CtP~ L.
Given O C X open set, we introduce the space

Llog% L(0) = L(logL)% (0) := {f measurable on O [A »(c|f]) € L'(0) for some ¢ >0} =
= {f measurable on O |A »(|f]) € L'(0)} =

= {f measurable on O |f(log|f| \/0)% e L'(0)}

to see this equality, we can compare the derivative of | f(log | f| \/O)% with (log(1+5)) . Llog% L(0)
is an Orlicz class, see [1]; it is a Banach space (by the Ay-condition and 7 finite, see ([1]) with the
norm

171,

we introduce on R the function

— inf{a > 0| /O A1) dy < 1):

L(logL)2(0,y)

Y(x) = /Oxexp(t2 —1)dt,
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we can do the same construction, and, given O C X open set, the space
LY(0) := {f measurable on O |exp(c|f|*) € L' (0) for some ¢ > 0}

is a Banach space with the norm

1 Fllovio) = inf{a > 0| /0 W(\f|/e) dy < 1}.

Ay and Y are complementary functions in the sense of [1] (see for instance [42]), and we
have that, if f € L(logL)% (0), g € LY(0) then we have this generalized Holder inequality

we have that, if g € X}, hence there exists ¢ > 0 s.t.

| exo(clsF) dy<ee
1

by Corollary 2.1.19 (particular case of the Fernique theorem), so for all h € H, f € L(logL)2(0),
the integral |, o Jh dyis well defined and finite.

Fellio) S2UAI oy rb o) 18117 0):

We want to prove
L7(0) C Llog L(0) C L'(0);
the first step is to prove for some ¢ > 0 that HilHL‘*'(O) < c|h|y for every h € H.
If h € H, then we can define the measure yo /i~ !; by [14], Lem. 2.2.8, we have that yoh~! is
h

. . . )
a centered Gaussian measure with variance |h|% = 12(%)"
We want to estimate

2 > : h
il il >0 [ (2] ar< )

1Al |h(x)| /ot )
o ;:/\P — dy:// exp(t” — 1) dt dy(x);
X a xJo

exp(s* —1) <1

now, for a > 0,

we have

if [s|] <1, and
exp(s> — 1) < sexps®
if s > 1, therefore for every s > 0
exp(s® —1) < 1+sexps?,

hence

t ' ?—1
/ eXp(SZ—l) dsg/ (l—l—sexpsz) ds:[—l-%
0 0

()| /et
ag = / / exp(r? — 1) drdy(x) <
xJo

and so
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<ot [l dre) +5 [ expllhin/a?) dvi) -5 <

(because yo h~" is a centered Gaussian measure with variance |h|?, and by Holder inequality)

a Al + ! /+wex ( & )ex i dt !
2 _— _ p— —_— =
20t S ) P\ )P

1 oo 1 1
-1 2( -2
=a '|h —i—/ exp(t* (0 " — —5)) dt — =
Al 20hlgv27 P 2|h|%1)) 2
so for every a > 2|h|y
h h|lgv4 1 2
/ U dy< by VAT 1 V2
X 2 2|h|lgV2n 272
hence
1] ) < 2l
In particular, we have that if f € Llogi L(0O) then
[y <2081,y o Willsio) <4061, 8, Il

We have that Llog% L(0) is continuously embedded in L!(0), because

/ f1 v <2110l w0y I

Llog? L(O

We notice that, for all p > 1, there exists C > 0and R (0 <R < 1) s.t. Aj5(t) < R+Ct? for
every t > 0, hence, for HfH 0 <C” '(1—R) we have

/ A () dylw) < R+C / P dy<1,
0 0

i.e. for every f € LP

/Al/z 7(1 )7\l dy<1
0 1A 1lr (o) ol

C \1.
1 1ogd 10y = 111z o) <I—R> ’

and L?(0) is continuously embedded in Llog% L(0).
Hence we have

SO

L7(0) C Llog? L(0) C L'(0)

and the embeddings are continuous.
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3.2.2. Definition of W!7(0) . We will always assume that O C X is an open set; we want to
define the Sobolev space W'?(0) for p € [1,+oo]. There are different possible definitions; we use
the definition as the closure of Lipschitz functions in norm W17,

We recall that Lipschitz functions are Gateaux differentiable and H- Gateaux differentiable
Y-almost everywhere by Theorem 3.1.11.

DEFINITION 3.2.1. If O C X is open, we define the operator Vy from Lip(O) to L?(O,H).
The next Lemma is a generalization of [26], Lem. 2.2.

LEMMA 3.2.2. For every p € [1,+e), the operator Vy is closable as operator LP(O) —
LP(O,H).

PROOF. We have to prove that, if there are two sequences f,,g, in Lip(O) s.t. f, — f and
gn — fin LP(0) while Vi f, — yj and Vg, — v, in L?(O,H) then y; = y,.

By linearity, the above is equivalent to prove that given a sequence f, in Lip(O) s.t. f, — 0 in
L?(0) and Vg f,, — i in LP(O,H) then y; = 0.

It is not restrictive to suppose that p = 1. We consider i € H,|h|y = 1, we define for every
y € h' the open set Oy C R where O, := {t € R|y +th € O} and the functions f,, € Lip(Oy)
where f,,,(t) = f,(y+1th); clearly f,, — 0in L' (O, ') for n — +oo for y,.-a.e. y € h*; we also
have that f,, , is absolutely continuous and

Fuy@) = (Vi fu(y+1h),h)

(for y,.-a.e. y € ht). Now, (Vi f,,h)y converges to (y,h), in L'(0), hence, for y,.-a.e. y € h*
we have that f; , converges in L'(Oy,7"). We consider such y: in every open bounded interval
(a,b) C Oy, we have that f,,, is a sequence which converges in W'!((a,b), "), and hence also
in Wh1((a,b)) with the Lebesgue measure (because (a,b) is bounded); so f,, converges to 0 in
Whl(a,b) and (y(y+ -h), k), = 0; so (y(y+ -h),h), = 0 on Oy (that is open) and this for y,.-a.e.
y € h*, hence (y(-),h), = 0 y-almost everywhere on O; this for every h € H,|h|y =1, s0 y =0
and we conclude. O

By the above Lemma, we can introduce this Definition.

DEFINITION 3.2.3. (Sobolev Spaces) For every p € [1,+c0), W»(0) will be the domain of
the closure of Vy : Lip(O) — LP(O, H), this closure will always be denoted by V.

By Corollary 3.1.16, for O = X the above definition is coherent with the Definition 3.1.6.

REMARK 3.2.4. i) The Sobolev space W!?(0) can be defined in other ways for O = X
and p = 1, other definition are in [14]). An equivalent definition of W1=2(0) with O
convex is in the next subsection 3.2.3.

ii) If f is Lipschitz in O, it can be extended to a Lipschitz function f in X, hence f €
WP (X); we know that ZC;’(X) is dense in WhP(X), so f can be approximated by
functions in .%# C}’(X); hence, by definition, the restrictions to O of functions of .7y’ (X)
are dense in W7 (0).

DEFINITION 3.2.5. For p,q € [1,4), ¢ > p, we define W'"?(0)NL4(0) or (W'* NL7) (O)
as a space given by the norm ||-||y1, + ||| 45 @ sequence converges in this space if it converges
both in W1 (0) and in L1(0).
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REMARK 3.2.6. We have that the restrictions to O of .#C}’ are also dense in the space
W'2(0): it suffices to consider the extensions of Lipschitz functions, and to approximate those
with elements of .#C}’.

REMARK 3.2.7. We recall that a Lipschitz function f on a subset of a metric space can always
be extended to a function Lipschitz in all the space, with the same Lipschitz constant /, for example
with the McShane extension (see Appendix).

REMARK 3.2.8. By the definition, it is easy to deduce that some versions of the chain rule and
of the Leibniz rule are true for the H-gradient Vy: if ¢ € Lip,(O) (Lipschitz and bounded) and
feWwhP(0) for p> 1, then o f € W'P(0), and

Va(@f) =Vuof+oVuf:
if ¢ € Lip(R) and f € W!»(0,7) for p > 1, then ¢ o f € W'P(0), and
Vi(@of)=(¢'of)Vnuf.

In particular, if f* is the positive part of a function f € WP (0) (i.e. f+ = fV0), we have
that £ € WHP(0) and, if A = {x € O|f(x) > 0} then VHfg = Vi fia and VHf‘;\A = 0; in fact
fT := go f where g is the positive part of the identity on R, g is Lipschitz, g"R+ =0and g"R, =1,
so we can conclude by the chain rule.

REMARK 3.2.9. We have this result ([42], Prop. 3.2).

LEMMA 3.2.10. The space W (X) is continuously embedded in Llog% L(X).

We recall that C}(X) is the set of all the Fréchet differentiable functions bounded s.t. f’ is
bounded and continuous as a function X — H.

DEFINITION 3.2.11. C}(0O) will be the set of the restrictions to O of all the functions f €
Cl(X) s.t. f=0outof O.

We have that each function in C} (X) is Lipschitz. We could consider C}(O) as a subspace of
W12(X) or of W!2(0) (with the same topology).

DEFINITION 3.2.12. In this setting, for all p > 1, the set Wol’p(O) will be the closure in
WLP(0) of C}(O) (equivalently, we can consider it as the closure in W!(0) or as the completion
in the topology W17).

3.2.3. w7 (0) for O open and convex. We recall the concept of locally absolute continuous
function (see Appendix).

We will consider O C X open set.

We recall that for every i € Ry(X*), |h|y = 1 we can decompose (X,7y) as X =R x X;- (where
Xhl is the closure of the orthogonal of 4) and ¥ = 1 ® 5,1 (11 is the standard Gaussian measure on
R and 7,. is a nondegenerate centered Gaussian measure on Xhl).

We fix a basis {h1,...} of H s.t., h; € Ry(X*) for all i € N.

Fixed h € Ry(X*), |h|z = 1 and y € X;- we recall the definition of O, = {r € R|y+th € O},
interval in R, and the function f, on O, defined as f, := f(y+1th).
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DEFINITION 3.2.13. Forevery h € Ry(X*), we define D,? as the set of y-class of y—measurable
functions s.t. for 7, -almost every y € X,}, the function f, on O, has y,-representative fy (.e.
fi(t) = fy (1) for yi-a.e. 1) that is locally absolutely continuous; hence, for such y we define

ahf(y+th) = f),r(t)a
that is well defined for ¥, -almost every y € Xhl for y;-almost every ¢ € Oy.

It is clear that, if f € D,? then f has a representative f s.t. for y,.-almost every y € Xhl the
function fy is locally absolutely continuous.

DEFINITION 3.2.14. Given p € [1,+), we say that f € W."”(0) if f € L(0) and f € D?
for all h € Ry(X™), and there exists Vi f € LP(O,H) s.t. dpf = (Vuf,h)p.

LEMMA 3.2.15. W, P(0) is always a Banach space with the norm given by
||‘HW*1~P(O) = H'”LP(O) + ||VH‘HLP(0,H)-

PROOF. The only thing to prove is that, if f, is a Cauchy sequence in wP (0), then there
exists f € W, (0) s.t. f, — fin LP(0) and ||V (f, ~ leom) = O-
We already know that L”(O) and L?(O,H) are complete, hence f, — f and Vg f, — y for
some f € LP(0) and y € LP(O,H), we want to prove that f € W' (0) and y = Vg f.
For every h € H, for every y € XhL we define
Oy :={teR|y+thec O}
and f,,, f functions on Oy, defined as

Son(t) = fu(y+1h), (1) = f(y+1h);
clearly for 7, -almost every y € X;-, we have that the convergences Sy ——+——> fy and d,f, ——+——>
T on—+too n—4-oo
(W, 1))y in (0, 7).
For every interval (a,b) C R, for such y we have that f, ; converges to f, in W' ((a,b), £)

(therefore f, has y'-representative that is locally absolutely continuous), and d).f = (y,h), V-
almost everywhere; so we can conclude. U

REMARK 3.2.16. i) The norm H'HW“’(O)

Lipschitz functions are clearly in W,"”(0), so WP (0) C W, (0).

ii) Obviously if p < ¢ then W,"4(0) C W, (0).

iii) The definition 3.2.14 is inspired by the definition of w2 (X) in [44] (that is linked to
that of weak Sobolev space in [35]); in [44] the expression "absolutely continuous’ is
equivalent to our ’locally absolutely continuous’ (they follow [3] and [20] I1.4.1.5).

The next definition is taken from ([14], Def. 5.2.3).

is the same of [|-[|yy1, () for every p € [1, 4-0).

DEFINITION 3.2.17. A measurable function f : X — R is said stochastically Gateaux differ-
entiable if there exists a measurable function Dy f : X — H (called stochastic derivative) s.t. for

every h € H, w converges to (Vg f(+),h), in measure y for t — 0.

LEMMA 3.2.18. Given p € [1,+o0), if f € WP (X), then f is stochastically Gateaux differen-
tiable and Dy f = Vg f.
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PROOF. It is not restrictive to suppose p = 1. Let h € H, |h|y = 1, 7, the projection on A+
(given by I — hh).

For every h € H, t € [0,4), let f;, := w, we have to prove that fj,, converges to
dnf in measure 7y for r — 0.

Let € > 0; let

Are = {x € X||fas (x) — I f(x)| > €},
we want to prove that Y4, converges to 0 in L' (X, y).

For every h € H, f has a representatlve f s.t. for y,.-almost every y € X, - the function fy is
locally absolutely continuous and fy (t) = Iuf(y+th); we have that 9, f € L1 (X,7), s0 (Inf)y €
L'(R,n) for ,. -almost every y € X;, for such y we have that (9;.f), = £, is Ly (R, Z") (locally
L! with respect to the Lebesgue measure) hence y;-almost every point of R is a Lebesgue point
for fyl; if 1y is a Lebesgue point, we have that

fy(t()—l-t) fy l‘o ~/
t

][fy ) ds—F,(1) —>

hence we have that f, ; converges to dj, f almost everywhere in measure 7; for ¢t — 0; therefore y,,
converges to 0 y-almost everywhere.

We can apply the dominated convergence theorem, so Y4, converges to 0 in L! and we con-
clude. 0

REMARK 3.2.19. The problem to find an identity between W'?(0) and W,"” (O) can be seen
as an extension to the Wiener space case of the Meyers-Serrin theorem (see [55]).

We recall this result ([14], Prop. 5.4.6 ,iii)).
PROPOSITION 3.2.20. W,"(X) = W!r(X).

REMARK 3.2.21. In [14], Prop. 5.4.6, it is used a space D”!(X) defined in Def. 5.2.4: the
elements of DP! (X) are functions in W, ” (X ) which are Gateaux differentiable with Dy f = Vp f
hence, by Lemma 3.2.18 W,” (X) coincides with D”! (X).

11—t

The next proposition is an immediate consequence of the results in [44].

PROPOSITION 3.2.22. If O C X is open and convex, then the set of the restrictions of the
functions in WH2(X) = W) (X) is dense in W2 (0).

In Proposition 3.2.23, we will generalize the above result, by adapting the proof in [44].

For p,q € [1,+), p < ¢, we can consider W,”(0) N L4(0) as a linear normed space with
norm

H'ijﬁ(o)mm(o) = ”'HW*LP(O) + H‘HLP(O)
Clearly it is a Banach space.
We will prove this generalization of Proposition 3.2.20.

PROPOSITION 3.2.23. For p,q € [1,+0), p < g, if O C X is open and convex, then the set of
the restrictions of the functions in WP (X) N L4(X) is dense in WP (0) N L10).
Section 3.3 will be dedicated to the proof of the above Proposition, modelled on that in [44].

By the above Proposition, we have in particular that the set of restrictions of the functions in
WP(X) is dense in W,/ 7 (0).
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Now, we recall that .ZCy*(X), .#C}(X) are dense subspace of W17 (X) (see Definition 3.1.6,
and Remark 3.2.16); hence the spaces

FC(0):={f:0—R|f =g where g € FC;(X)},

FCHO) :={f: O—R|f=gpo where g € .ZC)(X)},

are dense subspaces of W!7(0).

We have also that Lip,(O) is a dense subspace of W' (0) by Corollary 3.1.15.

Now, bounded Lipschitz function in O can be extended to bounded Lipschitz functions of X;
hence we have this Corollary of Proposition 3.2.23.

COROLLARY 3.2.24. For p,q € [1,+e0), p <gq, if O is a open convex set, then Lip,(0),.7 Cy’(0),
FC}(0) are dense subspaces of WP (0) and of WP (0) N L1(0); moreover WP (0) = WP (0).

3.3. Proof of Proposition 3.2.26

In this section we adapt the argument of [44] to prove Proposition 3.2.23.

In Subsection 3.3.1 we recall some concepts, and we define, given a function f and a finite
subspace F' C H, a function f; which is in some sense, an approximation of f by convolution in
the directions of F'; we give also some properties of f¢. In Subsection 3.3.2 the proof is given, by
using these properties.

3.3.1. Preliminaries. In the sequel, as usually,(X,y) is a Wiener space, H is the Cameron-
Martin space, {%;};cn is an orthonormal basis, and, for every n € N, F,, :=< hy,...,h, >. For each
F,, we will define m, as m,(x) := Y, ﬁi(x)hi and P, := I — m,; for F C H, F finite dimensional,
we consider F* as in Section 2.3. B(a, r) will be the ball of center a and radius  in the metric of
X, B(a,r) is the closure of B(a,r), B(s) is the closed ball with center 0 and radius s; By (a, r) is the
set of all the points x € X s.t. x—a € H and |x —a|y < r, By (s) is the closed ball in H (as a metric
space) with center 0 and radius s. If F is a subspace of H, Br(a,r) will be the set of all the points
x€Xst.x—acFand|x—alg <r,and Bp(r) := Br(0,r).

If A is a set in X, we will write co(A) to mean its convex hull, i.e. the smaller convex set
contained in X which contains A.

We recall that there is ¢ > 0 s.t., for every h € H, ||h||y < c|h|g by (2.2.5). We recall also that,
if f is H-Lipschitz on X, then it is W!»(X) for every p € [1,+oo| by Corollary 3.1.15. For every
F C H, as usual we define ¥ measure on F and Y. measure on F L as in Section 2.4; for h € H
we will write y,1 to mean Y- .. Let O be an open subset of X, and f a measurable function on
O: O, and f, are defined as usually.

DEFINITION 3.3.1. If O C X we will say that O is moderate if, for every h € H, for y,1-a.e.
y the boundary in R of Oy has null Lebesgue measure (in particular, if O is convex it is clearly
moderate).

Let F be a finite dimensional subspace of R,(X*) C H of dimension N; with the inner product
of H, F has an orthonormal basis and it is isomorphic to RY, so on F we can define the N-
dimensional Lebesgue measure .ZV; let ¥ € C*(F) be a nonnegative function such that supp ¥ C
Br(1) and ||¥|[11(p ¢~y = 1. For € > 0 we define on F the function W¢(y) := ¥(xe~1).

Let O be an open convex (hence moderate) subset of X. We consider an element f € LP(0O)
as an element of L”(X) setting f = 0 on X \ O. Moreover, assume that f =0 on X \ A+ Br(R),
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where A C F* is a compact set. Then,

oo>/A/BFR |f(x+y)|Pdyr(y) dYp.(x) =

,d 1
7 e (<52 s o >
Br(R
1
(2m) 1;’// Ffx+y)|[Pexp (—Rz) dy dyg.(x),
Br (R 2

andsoy+— f(x+y) €Ll (F,.#") for }/FL—a.e. x € F*. Now for such x, for y € F, we can define

loc
(3.3.1) fe(x) ::/Ff(ery—z)‘I‘g(z)dz:/Ff(x%—z)‘l’g(ery—z)dz.

In other words, for yp1-a.e. x € F + the function fex on F is the convolution of f, with W, where
it is defined (by identifying F with RV).

For almost ¥y -a.e. x € F- we can introduce the section fz, : F — R, h+ fe(x+h).

For y..-a.e. x € F we have, for some C > 0 depending only on R,

(3.3.2) I feell oy < CULEZ

hence f; € LP(X).
In fact

Lr(F

p
feallpiry = | ] [ ey =y e | ) <

(by the Jensen inequality, by remarking that w.#! is a probability)
< [ [ 15ty =el () =
FJF

(with a change of variables)

1 1
= [0 [ty pens (<30 R 1R war oy <
F Br(R)

(by y" € Br(R))
<exp( ) [ eIl dy—exp( >!fo

For every x € F* s.t. f, is Lloc(F . Y1) (so, for yp. almost every x) we have that the function
fex 1s a continuous function (by the properties of convolution in finite dimension).

Moreover for such x, for any & € F\ {0}, we have, by differentiating under the integral sign,
that fe . € C'(R) for y#-a.e. x € F*, and for such a x, for every y,h € F,

(3.3.3) 8hfg(x—|—y):/Ff(x+z)8h‘1’g(x+y—z)dz,.

Let f € W,”(X); then for yt-ae. x € FX, we have f, € W'P(F), so f, € lecp in the Lebesgue
sense; in this case, by the properties of convolutions, for every y, i € F we have

(3.3.4) Ofe(x+y) = /F hf(x+y—2)Pe(2)dz,
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(in particular fe € D;?)): hence 9, fex 1s the convolution of dnfx with ¥, and arguing as above we
obtain that for y-a.e. x € X, dyfe(x+-) € LP(X).
We have this Lemma.

LEMMA 3.3.2. Let f € LP(X) and let f¢ be defined as above, for any € > 0.
i) fe—>finl?(X)ase—0.
i1) Let U C X be an open; let f € w,! P(U) and let U' C X be an open set such that U’ +
Br(r) C U for some r > 0. Then, oy fe = (9nf)e in U and it converges to dyf in LP(U")
as € = 0 for any h € F\ {0}.

PROOF. i) At first, we notice that f¢ , — f; in LP(F) by the properties of convolutions: in
addition ||f8,X||€p(F) < ||f8.,XHZp(F))> and we get

e =My = [ Moo= Fll e () =5
as € — 0 and we can conclude by dominated convergence theorem.

ii) As we seen for 3.3.4, dfe(z) = (Inf)e(z) if z4+ Br(€) C U, and s0 dj,fe = (Ihf)e in U’ for
any € < r. Therefore, the same argument of i) implies that (dj,f)e — dpf in L (U’). O

3.3.2. Proof of Proposition 3.2.23. Let p > 1. We define:
Wi (0) := WP(0)NL=(0).

W>(0) as the set of elements f € W, (O) s.t. there exist some F € {F, },cn, a compact convex
VCF'aeFands>0s.t V+B(a,s)COand fiovir) =0 y-ae.

W3(0) as the set of elements f € W;(O) s.t. there exist some F € {F, },cn, a compact convex

VCF' a€F,s>0andR>0s.t V+B(a,s)COand f, 55 =0 r-ae.

Proof of Proposition 3.2.23.
The proof will be in four steps.

Step 1.

We prove that if £ € W;(0) then it can be approximated in sense W, *” by functions in W5 (0)
which are uniformly bounded in L*(O) by || f||z=(0)-

Let f € W;(0); hence, for any € > 0 there exists 6 € (0,¢€) such that

/ VuflPdy<e,  forevery A € B(X) st y(A) <
A

in fact, if by contradiction such a 6 does not exist, then there is a sequence of Borel sets A, s.t.
¥(A,;) — O but [ A, |V f|Pdy does not converge to 0, but this contradicts the absolute continuity of
the integral.

Fix € and 6 as above. We define the following sets.

e V| := B(ao, s) such that B(agp,3s) C O.

e V, C V| +F beacompact set such that y(V,) > 1— 0, for some F € {F, } ,eny; we prove the
existence of V5. We define F., := U,Z’l F,; we know thatitis densein X,so V| + F. =X
by definition of V;. Now, y(V| + F..) = sup,cy Y(Fy), so there exists F := F, (we will
write Pr := P, and 7 := m,) such that y(V; +F) > 1 — 3§ /2. We can conclude by recalling
that V| + F is an open set, and so Y is a Radon measure on V| + F (by Proposition 1.2.6).



68 3. SOBOLEV SPACE IN WIENER SPACES

o V3:=Pp(V,). Westress that V3 = Pr(V,) C Pr(Vi 4+ F) = Pr(Vy). V3 is clearly a compact
subset of F*.
e V4 :=coVj is a convex compact set in X (the closure of a convex hull of a compact in a
Banach space is compact, see e.g. [[14], Prop. A.1.6]), and therefore in F*.
o V:=V,+ (F-NBy(s)), and a := 7r(ag). Clearly, also V is compact in F* since By (s)
is compact in X (because the inclusion of H in X is compact).
We have V, C V4, +F. Indeed, for any v € V, we obtain v = Prv+ gy € V3+ F C V4 + F. Moreover,
V + B(a,s) C O. To prove this inclusion, we note that

(3.3.5) V +B(a,s) CVa+By(s) +B(a,s) CVa+B(s)+B(a,s) C Vs+ B(a,2s).

Hence, it remains to prove that V4 is contained in a suitable set. To this aim, from the above
definitions we have

(3.3.6) Vi =coV3 = coPr(V,) C coPr (V) + F) = coPrV) C coPrB(ag,s) C Be(ao,s).

The last inclusion follows from the fact that PrB(ag,s) C B(Prao,s), and that coPrB(ay, s) is the
smallest convex set which contains PrB(ay,s). Indeed, putting together (3.3.5) and (3.3.6) we get

Vi+B(a,s) C B(Prao,s)+B(a,s) C B(ao, 3s).

The last inclusion is quite easy to prove. Let x € B(Prao,s) and y € B(a,s). Then,
x4y —aol = llx+y—a—Prao| < |x = Praol| + |y —all <3s,

and since B(ap,3s) C O the proof is complete.
Now, we set
0(z) == (1—s dist(z, V4 + F)) "
where dist is the distance in the space X. Clearly ¢ is 2s~!-Lipschitz, hence ¢ € W!»(0) and
IVuo|ly < 257! y-ae.. Moreover, ¢(z) € [0,1] everywhere, ¢(z) =1if z€ V4 +F, =0 on
O\ (V+F)and

Zgl/P

IVa@llr0) = IVE@ | (0\as)r) < 257 1O\ V)P < —

We prove ¢ f € Wi (0). We get
1f = @fllr(0) <M1= @llrio) < MY(O\ (Va+F))'/? < My(X \V2)"/P < M§'/7,

where M := || f||. As far as the L”-norm of the gradient has concerned, we obtain
IV f =Vu(@ )0y <IVaSr0\vier) +MIVES| 2(0\v,+F)
2Me!/P ,
<e+ <P foms™h).

Obviously [|@f||;=(0) < M.Therefore, W»(0) is dense in W'(0).

Step 2.

We prove that if g € W;(0) then it can be approximated in W,"* by functions in W3(0) which
are uniformly bounded in L*(O) by ||g||=(0)-

By the first step, we know that a function in W} (O) can be approximated by functions in W, (O)
which are uniformly bounded in L*(0) with its L* constant; we prove that a function f € W5(0)
can be approximated by functions in W,(O) which are uniformly bounded in L*(0O). To this aim,
we consider f € W»(0), F as in the definition of W>(0) and for any R > 0 we take a smooth
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function g : [0, 4e0) — [0, 1] such that dg = 1 on [0,R/3), g =0 on [R,+oo) and |P}| < 2/R.
We set Qg(z) := Pg(|7pz|y). Clearly, for € W5(0) and

If = 9rfllLr(0) < Mye (BT (R/3))!/P =0,

Vi (f — @r ) ler0) < Ve S o)y (Br(R/3)) /P +2R™'M — 0,
as R — +o0, where M := || f|o. It is also clear that || @ f|| =) < M.

Step 3.

We prove that if f € W;(O) then it can be approximated in W,*” by functions in W'”(X )io
which are uniformly bounded in L*(0) by | f|1=(0)-

By the second step, it is not restrictive to suppose that f € W3(0). Let V,F,a,s and R be as in
the definition of W3(0), and let R be large enough such that

V +B(a,s) C F* +B(a,s) C F- +B(R).
Let a € (0,1/2] and let us consider the homeomorphism 7 on X defined by
To(z) := Pr(2) + (1 — o) 7 (2) + 0ta = z+ a(a — 7p(2)),

forany z€ X. If z=x+g, withg € F, then Ty (z) =z+a(a—7r(z)) =x+ g+ ala—np(z)) =
a+g, where g = g+ a(a—mr(z)) € F. Hence, x+ F is invariant under Ty, for any x € F*.
Moreover, it is easy to see that Ty, is the homothety centered in Pr(x) +a with ratio 1 — a.
Therefore, if we consider z € V + B(s/2), we get

T, (0)N(z+F) =T, (0N (z+F))
)

Now, we define
Yo =T, ' (V+B(s/2) +F)N0O),
forany o € (0,1/2].
Each Yy is convex, Yg C Yy if B < & and we can define fy := f o T, on Yg, since if z € Yy

then Ty (z) € O.
Obviously fo € L™(Ye) and || full;=(y,) < [|fllz=(0)- By Lemma 3.3.3, we have that f, €

w)r (Yq2) and it converges to fiy, , in that space if o goes to 0.
Now we set Oy := (V+Br(R'))NO and O, := (V +B(s/4)+Br (R +1)) OTOZ/L(OO). Clearly,
O is a compact set, O, is an open set and we have the following chain of inclusions:
YCO1CO1C0xC Y=Yy

We introduce the function

dist(z,09)
p(z) = — - c
dist(z,01) +dist(z, 0%)
where dist is the distance in X. 0 <p <1, p=1o0n O; and p =0 on 05.
We define

_ ) fa(@p(2), z€ 0,
g(Z) o {0 Z ¢ 02.
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p is bounded and Lipschitz continuous, hence g € W!”(X). Moreover, g = f, on Y and g = 0 on
O\Y.Indeed, fo =0on (Y4NO)\Y and p =0o0n (O\Yy)\Y C (O\Yy/,) C O5. Then, we have

(337) ”g_fHW*"”(O) = ||fa —f||W*|,p(Y) <e.
Hence, g approximates f in W,"” (0), and clearly
lgll=0) < I falli=0y) < 1fll=(0)-

Step 4.

Let f € W,""(0), for M € N we define the function fy; :== f AMV (—=M); for every h € H, it
suffices to consider f, on O, for y*+-almost every y € h' to prove that fy; € D}? and that (up to a
Y-representative)

onf(x) if |f(x)] <M.

0 otherwise

I fu(x) = {
hence, it is immediate that f € W,'"”(0) with

Vuf= {VHf(x) if | f(x)]| <M;

0 otherwise

moreover fyy — f in w7 (O) as M — o0, for any p > 1 (by dominated convergence theorem).
Then, let f € W,"”(0) NL4(0), we have that for fyy = f AMV (—=M), fiy — f in WP (0)
by what we said, and fy; — f in LY(O) by the dominated convergence theorem and clearly fy; €
W.?(0)NL™(0) for every M. By the above steps, each function in W, (0) NL=(0) can be
approximated in W1 by a sequence of restrictions on O of functions f, in W7 (X) N L=(X)
which are uniformly bounded in L*(0O); so, by the dominated convergence Theorem (because y
is finite and f,, converges pointwise), f,, converges also in L?(0) for every g < +oo; therefore, we

conclude the proof.
O

Now we prove Lemma 3.3.3 which we used in the step 3.

LEMMA 3.3.3. Let [ € Ws, [a defined in the step 3; then fo € W*l’p(Ya/Z) and it converges to
fiv, » in that space if o goes to 0.

PROOF. We recall that f € W3 satisfies the hypotheses of Subsection 3.3.1: we can define f,
and we have f; € LP(X), dufe € L7 (X) because f € WP (X).
We recall that

Yo =T, '((V+B(s/2)+F)NO)

for a € (0,1/2].

At first, we notice that fo =0on Yy \ T, ' (V +Br(R)), since f =00n O\ (V +Br(R)). Hence,
there exists R’ > R independent of ¢ such that f, =0 on Yy \ (V +Bp(R')) for any o € (0,1/2]
(it is enough to take R’ > 2R).

We define

Y:=(V+Br(R)NOC (V+F)NO C Yy,

it is a set relatively compact (because V is compact) and convex.
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We prove that Yo T,; ! is absolutely continuous with respect to ¥: in fact for any bounded Borel
function g on X we have

/ ¢(@)dyo Ty (dz) = / ¢(Tu(2)) d¥(z) =
X X
= [ [t (1=ap+a@) arb) dye- 9 -

—en [ [ terren (-2 (1-a) nay a0 =

0 [ [steren (- ol b ) (e a0

Hence, yo T, ! is absolutely continuous with respect to y and its Radon-Nikodym density
d(yoTy ") Y —ad?® 1, -
_ = [ —_ 1—« n
B0 =ew (5 ar o) 1-a)

is uniformly bounded with respect to o € (0, 2) on any compact of X, hence alsoon Y.
fa=0o0n (YoNO)\Y and f =00n O\Y (because f € W5 and R’ > R). We have

d(yoT;!
fody= fPd(yoT, ') = / f”MdK o0,
Ve Ta(Ye) To (Yo )Y dy

since the Radon-Nikodym derivative of Yo T, ! is bounded on compact set. Therefore, fy €
LP(Yy).
For every f € L”(Y) (f not necessarily bounded) we have

(3.3.8) ||foc _inp(y> SHfOTa —Je OTaHLp(Y) + Hfs 0Ty _feHLP(Y) + Hfs _fHLl’(Y)
d(yoT;! 1/p
(:39) <lfe~ ey (H(Yd) + 1) o T~ fellom
Y L=(Y)

The last term goes to 0 as o¢ — 0: in fact, f¢ is continuous in direction & for every i € F, we have
Ta(x+F) Cx+F for every a € (0,1) and x € X, and T, converges to the identity; moreover
(3.3.2) yields

||stTa—f£|| <g

where, forevery y € FX, h € F,
8y +k) == aR||fll 1y, .2m |Yellcr:

now
/ ¢ dy < eV a|| %], / / FOARI dk iy (y) <
Y Ft (ya)y

(if pr is the density of yr with respect to the Lebesgue measure)

< of||% | / / Fo+0)1Ppg " (k) dye (k) dye. (y) <

< aPH‘PsHésNMsup{pF<y,k>ry+k % / FPrdy
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(sup{p; ' (,k)|y +k € Y} < o because Y is compact) hence g” € L' (Y) and we can apply the
dominated convergence Theorem to conclude (we remark that in this argument we did not use the
boundedness of f). Hence, we get
1/p
“),
L=(Y)

and letting € approaches 0, by Lemma [?] we obtain that f, converges to f in L”(Y) as o« — 0.

Analogously we can prove that Vi f o Ty, converges to Vg f in L? (in the above paragraphs we
used the fact that f is L” and O out of the compact Y, not that it is bounded).

To prove the convergence of the derivatives, let us consider 2 € H \ {0} and let us define
F := span(F +h). We denote by {hy,...,h,} an orthonormal basis of F'. Clearly, for all 7 € X the
maps y — Ty (z+y) maps F to F' + Ty(z) and it is smooth. Now, we define fe with F replaced by
F and we notice that fis 0 on X \ (V + Bz(R), where V C F-. Indeed, f is zeroon O\ Y and Y is
a compact set. Moreover, the map fe o Ty, is differentiable along any direction of F y-a.e. and

d(yoT,")
dy

limsup || fo. — fllo vy <Ife = fllr) ( sup
a—0

ae(0,1/2)

m
(3.3.10) On(feoTu) =Y. O feoTalh—amp(h), hi)y.

i=1
By Lemma3.3.2, with F =F, O =X and To(Yg/2) = U', we deduce that o, fe — 0, f in LP (Te,(Yy2))
as € — 0. Then,

|00 oo Te =S o Tallon = | |onse = nsParoty )
To(Yos2

dyety) .,

/ e oSl
Ta(Yo2)N(Y+BF (1)) dy

(3.3.11) — 0, e—0.

Hence, putting together (3.3.10) and (3.3.11) we conclude that there exists the L7 (T (Y, 2 ))-limit
of dy(feoTy) as € — 0 and

llil’(l)ah(fg OTa) = Z&hifOTaOl — (Xﬂp(h),h,'>]-1 = <VHfO Ta,h— aﬂp(h)>1-1 = langleqfa,h)H,

i=1
in L7 (T (Yy2)), where
Vo =Vyfoly—oangoVyfoTy.

Since f¢ o Ty, converges to fy in LP(Yy), we conclude that f, € D:“/ ® (see the definition in the
above subsection) and Vi fo = Wo € LP(Yy»). Hence, fo € wlr (Yq,2) and

Vit~ Vuf Iy, / Vo — Vi flPdy = / Vaflrdy
YNor

/ \VifoTy—VuflPdy+2° 1 aP™ ‘/ | 0 Vi foTy|Pdy
YNnor YNnor
=1 (&) + ().
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By arguing as in (3.3.9), we deduce that /; (¢) vanishes as oc — 0. Moreover,

‘ d(yoTa)

)d’}/g apflzpleVHfHLp(Y) 4y

hoy <ar2 [ gt

To(YNO) d

L>(Y)
— 0,

as a@ — 0. Hence, Vy fy converges to Vg f in LP(Y) and therefore for any € > 0O there exists
a € (0,1/2] such that || fo — fllw.1r(v) < €

O

3.4. Second derivatives in Wiener spaces

3.4.1. Second derivatives and Hilbert-Schmidt norm. We recall the definition of Hilbert—
Schmidt operators, see e.g. [33, S X1.6]; for H-derivative we refer to [14], Chap. 5.

DEFINITION 3.4.1. Let H,, H, be separable Hilbert spaces. A linear operator A € L(H,,H>)
is called a Hilbert-Schmidt operator if there exists an orthonormal basis {4, : j € N} of H; such
that

(3.4.1) Y 11Ahj|7, < .
j=1
If A is a Hilbert-Schmidt operator and {e; : j € N} is any orthonormal basis of H;, {y;: j € N}
is any orthonormal basis of H,, then

2 _ v -
HAe]HHQ Z Aej?.yk Z ejaA yk
k=1 k=1

so that

Y llAesl3, = ZZ%AWw:ZZQAWm mem

j=1 j=lk= k=1 j=1
So, the convergence of the series (3.4.1) and the value of its sum are independent of the basis of
H,. We denote by H(H,,H,) the space of the Hilbert-Schmidt operators from H; to H,, and we
set

1/2
Al = @m%m),

for any fixed orthonormal basis {h; : j € N} of Hy; we call || - |3, ) the Hilbert-Schmidt
norm. When the setting is clear we denote this norm simply by |- |gs. Notice that if H; = R”",
= R™, the Hilbert—-Schmidt norm of any linear operator coincides with the Euclidean norm of
the associated matrix.
The norm (3.4.1) comes from the inner product

<A B H1 Hz Z Ah]th H27

for every couple of Hilbert-Schmidt operators A, B, the series converges for every orthonormal
basis {h;: j € N} of Hj, and its value is independent of the basis. The space H(H;,H>) is a
separable Hilbert space with the above inner product.

If Hy = H, = H, where H is the Cameron—Martin space of (X,7y), we set H := H(H,H).
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We want to define W57 (X) for k > 1. To this aim, we define the cylindrical E-valued functions
as follows, where E is any normed space.

DEFINITION 3.4.2. For k € N we define FC5(X,E) (respectively, FC;*(X,E)) as the linear
span of the functions x — v(x)y, with v € FC§(X) (respectively, v € FC;°(X)) and y € E.

Therefore, every element of "J"C’g (X,E) may be written as
n
(3.4.2) v(x) = Z vi(x)y
j=1

for some n € N, and v; € FC(X), y; € E. Such functions are Fréchet differentiable at every x € X,
with V/(x) € L(X,E) given by

= Y (0 )y
=1

forevery h € X.
Similarly to the scalar case, we introduce the notion of H-differentiable function.

DEFINITION 3.4.3. A function f : X — E is called H-differentiable at X € X if there exists
L € Z(H,E) such that for every

| f(x+h) = f(X) = L(h)||[g = o(|h|g) forheH.

i sup W) =@ L)
r—0+ hEBH( ) ’h|

1.€.

where B (r) is the ball in H cantered in 0 with radius .
In this case we set L =: Dyv(X).
If f € FCL(X,E) is givenby f(-) = y(-)y with y € FC} (X) andy € E, then f is H-differentiable
atevery X € X, and
Dy f(x)(h) = [Vaw(x),hluy
In particular, if £ = H and {h; : j € N} is any orthonormal basis of H we have

|Duv (%) (h; ’H < ‘<VH‘I/ 1>H|2MH
so that Dyv(X) is a Hilbert-Schmidt operator, and we have

|Dv(x |S]{_Z|DHV Z| Vay(x),hi)y, Pyl

= ’VHW(X)’H’))‘H'

Moreover, x — Vg y(x) is continuous and bounded. In addition, the operator J : H — X,
UK)(h) == (kh)yy,  kheH

is bounded since -

KI5 =Y 1 (ki) vl = [kl 17

j=1
Then x — Dyv(x) = J(Vyy(x)) is continuous and bounded from X to . In particular, it belongs
to L (X,H) for every 1 < p < co.
We have this Lemma
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LEMMA 3.4.4. For every 1 < p < oo, the operator Dy : FCL(X,H) — LP (X, y;H) is closable
in LP (X, H).

DEFINITION 3.4.5. For every 1 < p < oo we define W!”(X,H) as the domain of the closure
of the operator Dy : FC} (X, H) — LP(X,H) (still denoted by Dy) in LP (X, H).

We get that W' (X, H) is a Banach space with the graph norm
» 1/p » 1/p
Vlhviogem = ([ WElar) "+ ( [ 1D#V (9l5car)

_ (/X(i <v(x),h,.>§{)”/2dy)l/”+(/x< y <DHV(x)(h,-),hj>z)p/§ly>l/p.

j=1 i,j=1

3.4.2. The Sobolev spaces W>”(X,7). If f : X — R is H-differentiable at any x € X (hence
the operator Vp is everywhere defined), we say that f is twice H-differentiable at X if Vyand there
exists a linear operator Ly € £ (H) such that

|VHf(f+/’l) — VHf(f) —LHh‘H = O(Vl’[-j) ash—0inH.

The operator Ly is denoted by D? f (%), and by Definition 3.4.3, we have that D%, f(X) = Dy Vi f(%).
If f € FCHX), f(x) = @(li(x),...,Lx(x)) with @ € CF(R"), [y € X*, then f is twice differen-
tiable at any x € X and

@ = Y, 400 L@, v weX

i,j=1

so that

(D f®hky, =Y 0:0;0(1Li(), ..., 0n(X) (Ryli, k), (Rylj k), h,ke€H.
i,j=1

D%{ f(x) is a Hilbert—Schmidt operator. We have this Lemma (see [14], Sec. 5.2).
LEMMA 3.4.6. For every 1 < p < oo, the operator
(Vi,D%) : FCH(X) — LP(X,y;H) x L (X, 7, H)
is closable in LP (X, y).

REMARK 3.4.7. In [14] the space of FC;°(X) is used instead of FCZ(X), but it is equivalent,
because each element of FC;(X) can be approximated by an element of FC;7(X) by convolutions.

DEFINITION 3.4.8. Forevery 1 < p < oo, W2P(X, ) is the domain of the closure of
(Vu,D3) : FCHX) — LP(X, 7, H) x LP (X, 7, K)

in L”(X,y). Therefore, f € L”(X,7) belongs to W2?(X,y) iff there exists a sequence (f,) C
FC2(X) such that f, — f in LP(X,y), Vi f, converges in LP(X,y;H) and D3 f, converges in
LP(X,v,H). In this case we set D% f := lim,,_, D% f;.
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W?2P(X,y) is a Banach space with the graph norm
(3.4.3) A w2 = 1Al ge + IV o Gty + DR A o a0y

1/p 1/p 1/p
= (furvar) " ([ rwurthar) ([ iohogar)
X X X

Fixed any orthonormal basis {h;: j € N} of H, for every f € W2 (X,y) we set
9iif(x) = <D12L1f(x)hj,hi>H-
For every sequence of approximating functions f,, we have
(Dhfu(X)hjs i)y = Dy faX)hishj)y, x€X, 0 j €N,
then the equality
dijf(x) = djif (x),

holds a.e.. Therefore, the W2 norm may be rewritten as

(o) “+ (L (o) o) "+ ([ (Ea) )"

j=1
3.4.3. Ornstein-Uhlenbeck operator. The concepts of strongly continuous semigroup on a
Banach space, of its generator and of form associated to semigroup on Hilbert space (see Subsec-
tion 1.1).
We recall that if an operator L is associated to a dissipative form, then its spectrum is contained
in (—0,0], and, for 6 > 0 we can define (67 —L)~! as a self-adjoint operator in L*(0O).
We introduce, in this setting

Jo:=(I—-oL) ' =0c(cI-L)"'=0R(c,L).

Let (E, i) be a measure space; in the sequel, L will always be an operator on H = L*(E, ),
a a form on H and 7; the strongly continuous semigroup on H generated by L, G, be the strongly
continuous contractive resolvent associated to L.

For the following definitions see e.g. [[52], Def. 1.4.1].

DEFINITION 3.4.9. T; (G)) is said sub-Markovian if, for every f s.t. 0 < f <1 then 0 <
T,(f) < 1foreveryt >0 (0 <T,(f)<1forevery A >0).
L is said a Dirichlet operator if (Lu,(u—1)*), <0 for every u € H.

We also recall this result about operators and generators (see [52], Prop. 1.4.3).

PROPOSITION 3.4.10. The following are equivalent:

i) L is a Dirichlet operator;
ii) T; is sub-Markovian,
iii) Gy, is sub-Markovian.

In particular we recall what that the heat semigroup on L*(R?, £4) is associated to the form
(W12(RY, #7), D) where, for f,g € W2 (R4, .£7),

D(fg) =5 [ V() Vel d.

The generator of T; is called Laplace operator, and it is denote by A.
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We have that D(A) = W2(R4, .#?), and

d az
Ve
= ox;
and we can say that Af is the divergence of the gradient of f.
The fact that A is associated to D implies this formula

/ AF(x)g(x) dx = — / VF(x) Vg(x) dx
R4 R4

for every f € W2?(R?, £%), g ¢ WI2(R?, £9).

We can find make equivalent construction in infinite dimensional space. Let (X, y) be a Wiener
space. We will consider the Hilbert space L?(X).
We can define the form (W!?2(X), D) where

1

DU = 5 [ (Vs Vaghy a0
X

the semigroup associated to this form is the Ornstein-Uhlenbeck semigroup on X, and it can be

expressed by the Mehler formula

(3.4.4) 1) = [ etV T=e Py

the operator which generates this semigroup is said Ornstein-Uhlenbeck operator on X. We have
that its domain is W22 (X) and it can be represented as

~+oo

Lf(x) =Y (9 f(x) = i), f (x))

i=1
where {h;};cn is an orthonormal basis of H; for what we said about the Gaussian divergence we
have

Lf =divy(Vuf).
The fact that L is associated to ID implies this formula
/X(Lf>g dy= _/X<VHf>VHg>H dy
for every f € W?2(X), g € WH2(X).
In the case RY with standard Gaussian measure 7", L has the form

N
Lf(8) :Af(é)—;éil)if(é)

where A is the Laplace operator, for f € W%?2 for some g > 1; If X is infinite dimensional we have
that

(3.4.5) Lf(x) =Y ((Dff(x)hi,hi),, — hi(x)0h f (%))

i=1

8

or f € W42 for some g > 1.

Now, let O C X be an open set. We have that we can define on L?>(0) the form given by
(W!2(0),D) where D is expressed as
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1
(346 Df.8) = | (Vuf Vug)u ¥t

it is a closed symmetric form (the closure is a consequence of the definition of W!2(0)). We call
the semigroup associated to Ornstein-Uhlenbeck semigroup with Neumann boundary conditions
on O or Neumann Ornstein-Uhlenbeck semigroup, and the operator Ly will be called Neumann
Ornstein-Uhlenbeck operator ; also in this case we have

(3.4.7) /O(szf)g dy= _/0<VHf7ng>H dy

for every f € D(Ly), g € W'?(0) (from an heuristic point of view, the above formula is a version
of an integration by parts formula without the part of the boundary; so, D(Ly) imposes that f
satisfy, in some weak sense, a Neumann boundary conditions).

If we consider the form given by (WOl 2(0),D) where D is expressed as in (3.4.6), it is a
closed symmetric form; it is associated to a semigroup called Ornstein-Uhlenbeck semigroup with
Dirichlet boundary conditions on O or Dirichlet Ornstein-Uhlenbeck semigroup, and the generator
Lp will be called Dirichlet Ornstein-Uhlenbeck operator; by definition D(Lp) C WO1 2(0) (so it
satisfies a Dirichlet boundary condition) and Lp satisfies

(3.4.8) /0 (Lpf)gdy=— /0 (Vaf,Vug)y dy

forevery f € D(Lp), g € WOI’Z(O).

In all cases, L € {Lp, Ly} is a Markov operator, in fact, if u € D(L), then (by applying (3.4.7),
(3.4.8))

/Lu(ul)+ dy:/<VHu,VH(u1)+>H dy<0;
) 0

hence in all of these cases, 7; is a contractive strongly continuous semigroup (by Proposition
3.4.10), and G is a contractive resolvent semigroup on L?(X), which implies (by definition of
contractive resolvent semigroup) that Jo = 6Gg(-) is contractive in L?>(0) and that T; is a sub-
Markovian semigroup i.e. if f < 1 then T;(f) < 1 and it is L”-contractive; we also have that G
has the same property; so we can restrict 7; and J4 to L*(0), and they are contraction operators.

We see that J5 (and 7;) can be defined as operator from L?(O) to L”(O) for every p € [1,+oo)
(but we do not know if they is regularizing).

We have now that J5 (and 7;) in L? is contractive with respect to the metric L': in fact, for all
y € L2, for all test functions ¢, by the self-adjointness of J,

(3.4.9) /Ofo(y)(P dYZ/OyJa(q?) dy < ¥l Ve (@)= < Iyl i@l

hence ||J5(y)|[;1 < ||y|lz1; so by the density of L? in L', we can define J,; as a contractive (and
hence continuous) operator in L.

Hence, we have that J; (and 7;) can be defined as a contractive operator L”(0) — L?(0), for
all p € [1,0), by the Riesz-Thorin interpolation theorem (see e.g. [58], Sub. 1.3.18), because L?
is dense in L? (see the Appendix for one of the several statements of the Riesz-Thorin theorem).

As in (3.4.9) we can see that 7; is contractive in L? for every p > 2 (by using the duality with
respect to L").

So, J5 and 7; can be defined in every L” for every p € [1,+o0) and they are contractive.
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REMARK 3.4.11. Exactly the same argument can be used for the Laplace operators Ay and
Ap in L*(0,.£V).

We consider O = X; for p € [1,+o0) the Ornstein-Uhlenbeck semigroup (7;),>0 on L”(X) can
be defined pointwise by Mehler’s formula:

(3.4.10) Tou(x) = / u(e*fx+ l—e_z’y> ay(y)
X

forall u € LP(X,7), t > 0; we remark that the formula does not depend on p.
Moreover, T; is a strongly continuous semigroup on L”(X); in the rest of this subsection, we
call L, the generator of the Ornstein-Uhlenbeck semigroup in L”(X).

3.5. Feyel-de La Pradelle measures and traces

3.5.1. Feyel-de La Pradelle measures. For this Chapter the main reference is [39].

Let (X,y) be a Wiener space.

Let F C Ry(X*) be an m-dimensional subspace of H; as usual we identify F with R™, choosing
an orthonormal basis. We recall the concept, for k € N, of spherical k-dimensional Hausdorff
measure S¥.

We denote by z = 7tz (x) the canonical projection as in Section 2.4, and F*, 7 and y*, for
y € Ker(7r), by By we denote the section

(3.5.1) By={z€F: y+zeB}.

as in Section 2.4.
We can now define spherical (o — 1)-dimensional Hausdorff measures in X relative to F by

(3.5.2) / / 8" '(z)dy-(y) VBCX.
Ker(nr)

for B € B(F).

LEMMA 3.5.1. S;f*l is a o-additive Borel measure on B(X). In addition, for all Borel sets B
the map y — fBV G dS" " is y--measurable in F*.

A remarkable fact is the monotonicity of 8;"’1 with respect to F', which crucially depends on
the fact that we are considering spherical Hausdorff measures.

LEMMA 3.5.2. 877! <857 on B(X) whenever F C G.

It follows from Lemma 3.5.2 that the following definition of spherical (eo — 1)-Hausdorff
measure or Feyel-de La Pradelle measure 8=~ in is well-posed; we set

(3.5.3) 8=~ 1(B) =sup82~'(B) = n;ns;—‘ (B),

F
the limits being understood in the directed set of finite-dimensional subspaces of OX*; we have
that it is actually a measure.

LEMMA 3.5.3. If 8! (B) < oo then y(S) =



80 3. SOBOLEV SPACE IN WIENER SPACES

3.5.2. Traces. We recall some results from [26].
As usual, (X,7) is a Wiener space. We recall that it is defined the Ornstein-Uhlenbeck semi-
group on L”(X); its generator can be denoted as L,,.

Fork=1,2,let (I — Lp)*g be the operator on L?(X) defined as
(I—Lp) 2 f:=T(k)" / 12 e T f dr
0
where 7; is the Ornstein-Uhlenbeck semigroup on L?(X) and

[(k) = / e drt
0
k

(see [14], Sec. 5.3). We have that for p > 1, the image of (I —L,)"2 is W'P(X) (see [14], Thm.
5.7.2). Following [26] and also ([14], Sec. 5.9), we recall a particular kind of capacity Cy , for
k € Nand p € [1,+00); for an open set U,

Cip(U) = inf{[| fllr) £ € LP(X), I —L,)"2f > 1 y—ae. inU};

for a general set A,
Cip(A) :=inf{Cy ,(U)|A C U, A'is open}.

DEFINITION 3.5.4. A function f is called C; ,-quasicontinuous if for each € > 0 there is an
open set A C X such that C; ,(A) < € and fix\4 is continuous.

Always following [26], we have the next Lemma which is an immediate consequence of [14],
Thm. 5.9.6.

LEMMA 3.5.5. Let p € (1,+o0)Let f € WHP(X) (f considered as a class of functions): there
exists a version [ of f (i.e. f is a function element of f) that is Borel measurable and Ci -
quasicontinuous, moreover for every r > 0

~ 1 1~
CipweX:fWl>n < |u-L) 2|, o

Such f is called a precise version of f. It is easy to deduce, from the above Lemma, that
two precise versions of f differs only in a set with 0 Cy ,-capacity: in fact their difference is Cy -
quasicontinuous, and it is a version of the null function, so it is O but in a set with 0 Cy ,-capacity.

We remark that, if G is the precise version of a function in W!*(X), then G~1(0) is a Borel
set.

Hereafter, we denote by p the measure 87!

We have this result ([26], Prop. 2.1)

LEMMA 3.5.6. If A is a Borel set s.t. Ci ,(A) = 0 for some p > 1, then p(A) = 0.

We consider G € W!4(X) for some ¢ > 1 and O := G~ !((—o,0)); in this setting, following
[26] we can give a definition of W!?(0) for p > ¢’ also if O is not open. Firstly, given f € Lip(0)
we can consider an extension to a function Lipschitz on X, and its gradient: by Lemma 3.1.8 this
gradient is uniquely defined in y-almost every point of O. So, we can define the gradient Vg as
an operator from Lip(O) in L?(O,H); we have that this operator is closable by ([26], Lem. 2.2).
Hence we can give this definition.
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DEFINITION 3.5.7. Let G € W!4(X) for some ¢ > 1 and O := G~ !((—o0,0); for p > ¢’ we
define the Sobolev space W!”(0) as the domain of the closure of Vg (defined on Lip(0)), with
the graph norm; it is a Banach space.

In this subsection we always use the above definition of W!”(0); in Chapter 6, we will make
stronger hypotheses on G (continuity) which imply that O is open; clearly in this case the definition
of W!P(0) is equivalent to that of Section 3.1.

The next Hypothesis correspond to ([26], Hyp. 3.1)

HYPOTHESIS 3.5.8. We consider a function G on X and a > 0 such that:
i) G € W24(X) for every ¢ € [1,%0) (so VG is well defined almost everywhere);
ii) Y(G™1((—e0,0)) > 0;
iii) |VuG|,' € L9(X) for every g € [1,).
In the above hypothesis, we define the measurable set O := G~!((—,0)); on O we can define
the space W'”(0) for every g > 1, by following Definition 3.5.7.

By G € W4(X) for every g € (1,+o0), we can consider LG where L is the Ornstein-Uhlenbeck
operator on L4(X) for every g € (1,+eo).

REMARK 3.5.9. Thanks to iii), we can define
div. VHG LG (D}G(VyG),VuG),,
v = - )
"VuGlu ~ |VuGlu VGl

which is used in the proof of [26], Prop. 4.2, which corresponds here to Lemma 3.5.15; for div,
see Subsection 3.1.3.

By G € W>4(X) and |V G|, € LI(X) for every g € [1,+20), we have that |Vy G|y € WP (X)
for every p € [1,+c0) and

D}, G(VHG),
VuGlg
in particular, when we will write |V G|y, we will usually intend a precise version of |VyG|y
considered as a class of functions; we recall that two precise version are equal everywhere except
in a set with 0 Cy ,-capacity (and 0 Feyel-de La Pradelle measure by Lemma 3.5.6).
We consider some additional hypotheses, that we will add in some situation.

Vu|VuGlp =

HYPOTHESIS 3.5.10. For the function G above defined, we add these properties:

i) |VuG|,"' (considered as a precise version) is well defined in G~!(0) and it is L= (G~'(0),p);
ii) V&Gl € L%(G™(=8,0));
iii) |LG| € L*(G1(-§,0)).

The next Lemma corresponds to ([26], Cor. 3.2) (see also Remark 3.5.12 here).

LEMMA 3.5.11. Under Hypothesis 3.5.8, let & > 0 and O, := G~ (=8, &); if f is a Borel
functions that is in L' (Og), then the function

__ f

is well defined for almost every & € (—8, &) (in the Lebesgue sense), and it is in L' ((—&, &),.Z")
(where £ is the 1-dimensional Lebesgue measure); moreover the measure fyo G~ id absolutely
continuous with respect to £ Vand qr is its density.
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REMARK 3.5.12. In ([26], Cor. 3.2), it is used a measure py, which in this setting coincides
with p by ([26], Cor. 3.6).

The next Lemma corresponds to the first part of ([26], Prop. 4.1).

LEMMA 3.5.13. Under Hypothesis 3.5.8, let p > 1, f € W'’ (X), and f be a precise version
of f

/ PV uGla dp =
{G=0}

—g / 2 F (Vi f,VaG)y dy+ / LGIf1 dy
G1(—e,0) G

B (_007 )

where L is the Ornstein-Uhlenbeck operator on LP.
The next Lemma corresponds to the second part of ([26], Prop. 4.1).
LEMMA 3.5.14. Under Hypothesis 3.5.8, let p > 1, f € W'P(X), and f be a precise version

of f
/) |71% dp =
(6=0)

2 AVuf,VuG)y . VuG
:q/ bk 2fdy+/ divy | ——— | |f]? dy.
G (—e0,0) d Vi Gl G~ (—,0) v \VuGlu i

The next Lemma corresponds to ([26], Prop. 4.2).

LEMMA 3.5.15. [Trace] Under Hypothesis 3.5.8, let p > 1; for every ¢ € W'P(0), there
exists exactly one Y € (\,.,LY({G = 0}, p) with the following property: if {@n}nen C Lip(X)
is a sequence s.t. Qo converge to @ in Wl’p(O), then the sequence @, (G=oy converges to Y in
L1({G =0}, p) for every g < p.

For ¢ =1 everywhere, we have the following Corollary (see also [26], Rem. 4.9 (i)).

COROLLARY 3.5.16. Under Hypothesis 3.5.8, p({G =0}) < co.

By the above Lemma we can give the following Definition (it corresponds to [26], Def. 4.3).

DEFINITION 3.5.17. [Trace] For each ¢ € W!?(0), we define the trace Tr¢ as the element of
@ € WHP(0) defined in Lemma 3.5.15; we have that Trg € LY(G~'(0),p) for every g € [1,+oo).
In particular,under Under Hypothesis 3.5.10 Tro € LP(G~1(0),p) (by the Lemma 3.5.18).

The next Lemma corresponds to ([26], Lem. 4.6).

LEMMA 3.5.18. Under Hypotheses 3.5.8, 3.5.10, Tr is a bounded operator W' (0) — LP(G~(0), p)
for every p > 1.

The next Lemma corresponds to ([26], Prop. 4.10).

LEMMA 3.5.19. Under Hypotheses 3.5.8, for all p > 1, let f € W'?(0), we have that Trf =0
iff the extension of f to 0 out of O is in W'P(X).



CHAPTER 4

BV functions

The topic of BV (bounded variation) functions in Wiener space has been studied for instance
in [42,45,7,8,4,5, 18, 17, 51]; we widely used the survey [54].
In the finite dimensional case, the total variation of a function in an open set A C R? is

IDul(4) = sup { / u(x)divo (x) dx: ¢ € CHA Y, ]l < 1}:

in Theorem 4.1.1 is stated that this is equivalent to the existence of a countably additive vector
measure with bounded variation (see Subsection 1.2.5) which satisfies to an integration by part
formula.

In the case of a Wiener space X, it can be given similar definitions (see in particular [8]); this
is recalled in Theorem 4.1.3.

A set A C X is said of finite perimeter if its characteristic function 1lg is BV; this concept will
be especially used in Chapter 8.

All this is in Section 4.1.

A possible definition of functions of bounded variation on O C X for X Wiener space is given
in [17]; the idea is that a function f must be BV along almost every line, hence a weak derivative
can be defined as a vector measure; if we impose that this measure has bounded variation, we have
the definition of BV (0); the idea of [17] is based upon the concept of Skorohod differentiability
(see e.g. [13]). This is recalled in Section 4.2.

In Section 7.5 we will introduce an equivalent definition of BV (O) (only for function which
are in L*(0)): it is inspired by one of the equivalences in Theorem 4.1.3.

In [17], the definition of BV (0O) is actually done for sets O which are H-convex a condition
weaker that convexity. We remark that the definition in [17] make sense for every open subset of
X.

4.1. Definition of BV functions in R¢ and in X

Let u be a countably additive vector measure with values in H and bounded variation; if h € H,
h # 0 we define m,u as the real measure with bounded variation defined as

Tt (A) := (1 (A)),
and for every i € N we define m; projection of H in F; =< hy,...,h, >, and we define ;1L as the
countably additive vector measure with values in F; and bounded variation defined as

mip(A) == m(u(A)),
. . 1 A~
We recall that there exists C s.t. if Llog2 L(O) then [, fhdy < C Hf||LlOg% £(0) |h| g for every
h € H (see subsection 3.2.1).
There are several ways of defining BV functions on R?, which are useful in different contexts.

83
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For the general concept see [6], [53]. For the next theorem see e.g [8] Thm. 2.1.

THEOREM 4.1.1. Let u € L'(R?). The following are equivalent:

i) there exist real finite measures Wj, j=1,...,d, on R? such that

(4.1.1) /]Rd u(x)d;¢(x) dx = —/Rd(])(x) du;j(x), V¢ € CHRY),

i.e., the distributional gradient Du = {l;} jen is an RY-valued measure with finite total
variation |Du|(R%);
ii) the quantity

V() = sup{/ u()divo (x) dx: 9 € CLRLRY), 0] < 1}
R4
is finite;
iii) the quantity
L(u) = inf{ liminf / Vit ()| dx| {t }ners © Lip(RY), 1 L u}
R4

n—soo
is finite;
iv) if (T;);>0 denotes the heat semigroup in R?, then
Wl =lim [ |VTu|dx < .

=0 JRd

Moreover, |Du|(RY) =V (u) = L(u) = # [u].

If one of (hence all) the conditions in Theorem 4.1.1 holds, we say that u € BV (R9). . V(u) is
called total variation of u.
If E C R? and |Dyg|(RY) is finite, we say that E is a set with finite perimeter, use the notation
P(E) (perimeter of E) for the total variation of the measure D) and write P(E,-) for |Dxg|(-).
We say that E C RY has density a € [0,1] at x € R if
ZLYENB,(x))
4.1.2 lim —— ==«
@12 P 2B, ()
(B,(x) is the ball of radius r and center x) and in this case we write x € E“.
We introduce the essential boundary

J*E :=R\ (E'UE").

Let E be a set with finite perimeter, we define the reduced boundary FE in this way: x € FE if the
following conditions hold:

. Dxe(B/(x))
(4.1.3) [DXE|(Bp(x)) > 0¥p > 0and 3 vg(x) = 1 e | (B, ()

with |Vg(x)| = 1; in this case, the perimeter measure coincide with the d — 1-Hausdorff measure
on FE (De Giorgi structure theorem)

(4.1.4) P(E,) =5, ().

We have that
FE CE'? C 9*E,
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and
AR\ (ECUE' UEY?)) =0,
and in particular s#9~1(9*E\ FE) =

We say that B is countably F¢*-rectifiable (for s € N) if there are countably many Lipschitz
functions f; : R* — R? such that

(4.1.5) Ve (B\ O f,(RS)) ~0
=0

DEFINITION 4.1.2. Let A C R? be an open set. Given a function f : A — R, we say that it is
locally BV if, for every x € A, there is a B neighbourhood of x s.t.

Via(f) i= sup{/u(xdivq)(x) dx: ¢ € C'(B,RY), 9]l < 1} < foo;
B

equivalently, it can be defined a countably additive vector measure Du (with variation not neces-
sarily bounded) s.t. for every open B s.t. |Du|(B) < -+oo we have for every ¢ € C!(B,R?) that
(4.1.1) is verified.

We recall that for every j € N, the operator 8* can be defined as d;' q)( ) = 0,0 (x) — hj(x )¢(

Now, the concept of BV function can be generahzed for the case of a Wiener space (X,7) se
[8] Thm. 4.5.

THEOREM 4.1.3. Letu € Llog% L(X). The following are equivalent:

1) there exists a countably additive vector measure Dyu with values in H and bounded
variation such that

(4.1.6) / ud, ¢dy = — / ¢d (dDyu,h;),, . V¢ € Ch(X),
x X
i.e., the distributional gradient Dyu is a H-valued measure with finite total variation

| Dyul (X);
ii) the quantity

Vi) =sup{ [ udivyg dvlo € ZCx.1). o]l < 1}

is finite;
iil) the quantity

1
L) = int {tmint | Vi b € Lip(0), s 2 u}
n—oo X

is finite;
iv) if (T;)i>0 denotes the Ornstein-Uhlenbeck semigroup in X, then

W [u —hm/]VHT,u\Hd}/<oo

Moreover, (X)=V(u) =L(u) =¥ u.

If one of (hence all) the conditions in Theorem 4.1.3 holds, we say that u € BV (X). V(u) is
called total variation of u.
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Similarly to the finite dimensional case, if E C X and |Dyxg|(X) is finite, we say that E is a
set with finite perimeter, use the notation Py(E) (Y -perimeter of E) for the total variation of the
measure Dyxr and write Py(E, -) for |Dyxe|(-).

LEMMA 4.1.4. Let X = R, (}Rd,}"’) be a Wiener space; if f is of bounded variation in the
Gaussian sense with weak gradient Dyf, then it is locally BV in sense Lebesgue; in particular f
is BV (0) in sense Lebesgue on every bounded set and Df is absolutely continuous with respect to

2
Dy f with Radon-Nikodym derivative g(x) = exp( —%)

PROOF. It is an immediate calculation that, for every ¢ € C!(0),

* & dy— _[? .
[ dr= [ s ow/sw) a= [ L awp);

and so, by the definitions, we can conclude. U

We recall this result from [25], Prop. 4.2.

PROPOSITION 4.1.5. If O C X is an open convex set, then Y(d0) = 0 and O has finite perime-
ter.

REMARK 4.1.6. In [25] there is indeed an example of compact set with infinite perimeter.

DEFINITION 4.1.7. [Essential boundary relative to F] If we write X = F @ Ker(7y), we recall
by (3.5.1) the definition of the slice of E in direction F

E,={z€F:y+z€E}CF;
the essential boundary of E relative to F' is then defined as

pE={x=y+z:2€d"(E))}.

DEFINITION 4.1.8. [Cylindrical essential boundary] Let F be a countable set of finite-dimensional
subspaces of H stable under finite union, with Ugc4F dense in H. Then, we define cylindrical es-
sential boundary d;E along J the set

sE:=J) [) OE.

FeF GeF,GDOF

The cylindrical essential boundary depends on JF.
By [45] and [9], we get a representation of the perimeter measure as follows.

THEOREM 4.1.9. Let E € B(X) be a set with finite y-perimeter in X, let F be as in Defini-
tion 4.1.8 and let IZE be the corresponding cylindrical essential boundary. Then, if {F,}neny C F
is an increasing sequence s.t. | J,cn F, is dense in H, hence for every B € B(X)

S (BNIZE) "= |Dyxe|(B).

REMARK 4.1.10. The above result is similar to the De Giorgi structure theorem (see (4.1.4),
but we can say that d;E corresponds more to the essential boundary than to the reduced boundary.

The generalization of the concept of BV in a set O C X is more complicated; we consider it in
the next section, for O convex, by using some concepts from [17].
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4.2. Definition of BV functions in convex subsets of Wiener spaces

4.2.1. Fundamental notions. We consider an orthonormal basis {#;,...};en of H s.t. h; €
Ry(X™*) for all i € N; for f function with values in H, we will write f; := (f,h;) .

As said in Subsection 2.3, for each & € Ry (X*), the set X;,. will be the closure in X of ht(in
H), and we recall that on it a centered nondegenerate Gaussian measure Y, is uniquely defined,
s.t. Y= 7,0 ® 1 (where ¥, is the standard centered Gaussian measure on R).

The next definition is taken from [13].

DEFINITION 4.2.1. A Radon measure ¢ on X is said Skorohod differentiable along & € X, if,
for every f € Cp(X), the function on R

t— /Xf(x—th) du(x)

is differentiable. If 1 is Skorohod differentiable then there exists exactly a measure v, said Skoro-
hod derivative of u along 4 s.t. for every f € Cp(X)

hm/f(x_m)_f(x)du(x):/fdv
t—0 X t X
(see [13] Subsec. 3.1).

REMARK 4.2.2. In ([13] Subsec. 3.1) the measures are supposed to be defined in the Baire
o-algebra, but it coincides with Borel o-algebra for metric spaces.
The next results are contained in [13], Thm. 3.6.5. and Cor. 3.6.7

PROPOSITION 4.2.3. A Radon measure |l on X is Skorohod differentiable along h € X with
derivative v if and only if, for every ¢ € FCy’(X), for everyt € R,

[0t —o) dut) = [ [ ote—sh avis)as

PROPOSITION 4.2.4. If a Radon measure |1 on X is Skorohod differentiable along h € X with
derivative v then, for every ¢ € C}(X),

/ah(pdu:—/(pdv.
X X

From the above two propositions and the Fubini theorem we can deduce this Corollary.

COROLLARY 4.2.5. u is Skorohod differentiable along h € X if and only if, for every ¢ €
FCy (X)),
/8h(pdu:—/(pdv.
X X
Instead of FCy(X) we can equivalently use C}(X), or FCL(X).

Now we can give a definition of BV (X) which is equivalent to that of [17], of [7], of [51] and
others (the difference is only in the set of test functions chosen).
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DEFINITION 4.2.6. A function f € Llog% L(0) is BV(O) if fy is Skorohod differentiable
along every h € H\{0} and if there exists a countably additive vector measure D, f with values
in H and bounded variation (Dyf is called weak gradient), s.t. for every & € H\{0} the real
measure 7T,Dyf — fft}/ is the Skorohod derivative of f7y; equivalently (see Corollary 4.2.5), for
every ¢ € 3C;(X),

/X fonp dy=— /X £ d (miDyf) + /X foh dy,

which equivales to
[ foiodr=— [ rampyp).
X X

REMARK 4.2.7. If instead of FC;°(X) we use FC} (X) or C}(X) as set of test functions, the
definition is equivalent.

We will give a definition of BV functions taken by ([17]).

DEFINITION 4.2.8. Let O C X a convex open set, a function f € Llog%L(O) is BV(0) if
there exists a countably additive vector measure D, f with values in H and bounded variation
(Dyf is called weak gradient), s.t., for all 7 € H\{0} we have: if for y € X, we define the set
Oy := {t € Rly +1h € O}, then for 7,. -almost every y the function f; defined as

[yt f(y+th)exp(—1*/2),

is well defined and BV on O, (with Lebesgue measure), and, for each A Borel subset of O,
mDyf ()= [ ar0)( [ apg;~ [ 15 0) )
X1 A, A,

where DY is the weak derivative (with respect to the Lebesgue measure) of fi7, and Ay := {te
Rly+th e A}.
REMARK 4.2.9. The above definition is equivalent to that of ([17], Def. 3.4) in the Gaussian

case, if we add the requirement f € Llog% L(0).
In particular we can define the BV norm

171l avi0) = | Flur o) + IDy1(0) + sup{ /0 fhdylh € H, hlz).

and we have that there exists C > 0 s.t. || f|| gy (o) < [Dyf](0) + Hf”u b r0)"
og

In particular, for O = X, it is equivalent to the Skorohod differentiability of fy for every h € H
with derivative m,D, f — fhy (see [13], Theorem 3.5.1.(iii)), so it is equivalent to Definition 4.2.6.

4.2.2. Further properties.
LEMMA 4.2.10. If y is BV(O), then for all n € N, v, :=nAyV (—n) is in BV(0) and
[Dyva|(0) < |Dyy[(O).

PROOF. By the Definition 4.2.8, and by |v,| < |y,| a.e., it suffices to prove that, if a function
fon (a,b) C R is BV with Lebesgue norm, its truncation f, :=nAyV (—n) is BV with Lebesgue
norm and

IDf|(a,b) < |Dful(a,b);
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(where D- is the weak gradient, with the Lebesgue measure); clearly this is true if f € C*(a,b):
in fact in this case the weak derivative coincides with the derivative multiplied by the Lebesgue
measure, so we observe that f, = f’ where | f| < n and f, = 0 where |f| > n.

Now it suffices to consider a sequence of functions {f;} C C*(a,b) s.t. f; — f in L' and
1l (ap) = |Df1(a,b) (see e.g. [6], Thm. 3.9), we have that the truncation f,; :=nA f; V (—n)
converges to f, in L' and |Df,;|((a,b)) < |Dfi|((a,b)), so by the lower semicontinuity of total
variation in L' (see e.g. [6], Rem. 3.5) we conclude. O

REMARK 4.2.11. It is immediate that f € Llog% L(0) is BV(0) if and only if there exists a
countably additive vector measure Dy f with values in H and bounded variation s.t., for all h € H,
defined for y € X;,. the set O, := {r € R|y+1th € O}, then for y,.-almost every y the function f,
defined as

fyit— fy+th),
is well defined and BV on Oy (with Gaussian measure yl), and, for each A Borel subset of O,

mD ()= [ (Dpf)A) 5 )

Xh
where D, fy is the weak derivative (with respect to the Gaussian measure ") of fy-
A kind of Leibniz rule can be defined for this weak derivative:

LEMMA 4.2.12. Let O an open convex set, if f € LP(O) for some p > 1, f € BV(0) and g is
Lipschitz and bounded, then fg € BV (X) and

4.2.1) Dy(fg) = gDyf + fVugy.

PROOF. Clearly fg € L?(X). If X is one-dimensional, then f is locally BV in Lebesgue sense
and

12
Df = (2m) e Dyf
(see the proof of Lemma 4.1.4); it is a simple calculation that fg is locally BV in Lebesgue sense
and

D(fg) =gDf+ fVugZ";
and in this case it is immediate that (4.2.1) is verified.
The general case is a consequence of the Definition 4.2.8. O
REMARK 4.2.13. We have that, if f € Lip ,(O), then for every x the function f; is differen-

tiable . almost everywhere on R; we remark that, for all ¢+ € R, for all x € X the function f,
is differentiable in O iff f, is differentiable in 0. We recall that for each &, the measure 7y can be
decomposed y = yh ® Y1 where n is the 1-dimensional standard Gaussian measure and j/,L is a

Gaussian measure on /- := ker(h) (see Subsection 2.3), and ¥; is continuous with respect to the
Lebesgue measure; hence, for almost every x € X, the function f, is differentiable in 0.

DEFINITION 4.2.14. If f € Lip, ;,(O) (see Definition 1.2.34), we define
Onf (x) := £:(0)

whenever the derivative f(0) exists (clearly it is well defined for almost every x € X by the above
Remark), d),f is defined in L™ (X) and ||, f||=(x) < ¢ and

i f(x) = Onf — fh.
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The next Lemma is a slight modification of ([17], Lem. 3.5).

LEMMA 4.2.15. Let O be an open convex subset of X. A function f € Llog% L(0) is BV(0)
iff there exists | s.t. for all h € H, for all ¢ € Lip, ;,(0),

(4.22) / e fdy= —/ odh, p)y
0 0
and, in this case, Dyf = L.

REMARK 4.2.16. There are some remarks about the proof of the above lemma.

In ([17], Lem. 3.5), the set of test function is a particular subset Dj,(O) of Lip, ,(0): if (4.2.2)
is satisfied for all ¢ € Lip, ,(0), then it will be satisfied for all ¢ € D,(0), and f € BV(O) by
([17], Lem. 3.5);if f € BV(O), then (4.2.2) is a consequence of the definition of BV(0).

In fact, if f € BV(0), for all ¢ € Lip ,(0) (so ¢x\o = 0) if

£ (0) = f(y+1h)(27m) "2 exp(—1/2),
and
@y(t) == @(y+1h)
and Oy := {t € R|y+th € O}, then, recalling that ¢,r\o, = 0 by definition of Lip, ,(O) and the
Definition 4.2.8

/Mfdy / dy*(y) / L) =1, £ (1)) dt =
:/ dy*(y) /% )dDfy — /rp} Jtfy(t) dt) = /cpthyf>

For the proof in the particular case O = X, see for instance [13], Thm. 3.6.5.

REMARK 4.2.17. In the case O = X, the condition of equation (4.2.2) is equivalent if we use
FCy(X) as the set of test functions (see [17], Sec. 3).

REMARK 4.2.18. It is clear that, if £ € W!?(0), then f € BV(O) and Dyf coincides with
Vuf v (we recall that L?(0) C L(logL)% (0)).

We Remark that, if f € BV(O) and we decompose Dyf as o|u| then we can write ;|| =
(hi, Dyf),, foralli€N.
We have, by Lemma 1.2.36, if Q is an open set in O, for each function f € BV (O)

IDyfI(Q) =
= sup{Z Q(pi d<hi7 DYf>H sme N?(p € LipO,m(Q‘vH)a H(pHL""(SLH) < 1}
i=1

and, by Lemma 4.2.15, we can deduce this Corollary (recalling the Definition 1.2.35 of Lipy ,, (Q, H)).
COROLLARY 4.2.19. If Q is a open set in O, for each function f € BV (O)

IDyf1(Q) =
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(4.2.3) =sup{)_ Qfa;fiq)i dy: meN,¢ €Lipy,,(Q,H), [|¢]li=m <1}
i=1

REMARK 4.2.20. Let {f, }.en be a sequence of functions and f a function s.t. f,,(x) — f(x)
for y-almost every x € X and

V.= h,?llo?f”f””Llog%L(O) < oo,

then, by the Fatou Lemma and the properties of Llog% L(0) spaces we have f € Llog% L(0) and
£

L10g2 L(O
By ([17], Thm. 3.8) and Remarks 4.2.9, 4.2.20 we have the following result:

PROPOSITION 4.2.21. If { f, }nen is a sequence of BV functions s.t. f,(x) — f(x) for y-almost
every x € X and

V)= llrgglf\Dyfn|(0) < oo,

Vy = ll,fgglfnf”HLlog% L(o) e

then f € BV(0) and |Dyf|(0) <V, ||fHL10g%L(0) <V

From the above Proposition follows the lower semicontinuity of the BV norm respect to the
Llog% L(0O) convergence, and we can deduce the following Corollary.
COROLLARY 4.2.22. If {f,} is a sequence of BV functions s.t. f,, — f in Llog% L(0O) and
V= ll}grl}glf\Dyfn](O) < oo

then f € BV(0) and |Dyf|(0) < V).

We will use the two following results, the first corresponds to a part of ([7], Theorem 4.5), we
can consider it in our case by the Remark 4.2.9; the second is an easy extension of ([51], Cor. 2.5).

PROPOSITION 4.2.23. In our hypothesis T, be the Ornstein-Uhlenbeck semigroup in L*(X):
if f € BV(X), then [y |VuTi flu dy — [Dyf|(X).

LEMMA 4.2.24. Let Q C O be open: if f € BV(0), and { f, }nen is a sequence in BV (O) s.t.
fo— fin Llog% L(Q), then |Dyf|(Q) < liminf,_,e |Dyf,|(Q).
PROOF. We argue as in the proof of ([51], Cor. 2.5).
Let ¢ := liminf, .. |Dyf,|(). Up to a subsequence, |Dyf,|(Q) — c; hence, by Corollary
n—soo

4.2.19, for all € > 0 there exists ne s.t. Y1, [, fu0s @ dy < c+¢ forall m € N, n > ne and
¢ € Lip,,(Q,H), @.n) < 1. Now for each i € N, we recall that d; y; € LY, and hence in

particular o y; € (Llog% L)’ (see Section 3.2.1), so

Z FuOp Wi dy — Z fah v dy

i=17/Q
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by the weak convergence; hence

mo
Z/fa,jl_q/idygche
i=1JQ

for every € > 0, therefore, always by Corollary 4.2.19,

mo
IDyfI() < Z Qfa’pzll/i dy<c—
i=1

We can deduce the following result.

COROLLARY 4.2.25. Let T, be the Ornstein-Uhlenbeck semigroup in L*(X): if f € BV N
L*(X), then |V T, f|ny weakly converges to |Dyf)| as a measure.

PROOF. We have that 7; f % f for each open Q C X, and recalling that L?(X) is embedded
in Llog% L(X), we can apply Lemma 4.2.24 and we have that
(4.2.4) ID,f1(®) < limint /Q VuTi | dy
(because |DyT; f| = |VuT; f|u7Y, see Remark 4.2.18).

Now, by Proposition 4.2.23 we have [, [VyT, f|n dy — IDf|(X).
1—

If [Dyf|(X) = 0 then Dyf is the null measure and |Vy7; f|nY converges to it (because it is
positive).
We consider the case |[Dyf[(X) > 0; hence we can define
w = (IDyf1(X)) ! IDyfl,
and, for ¢ sufficiently small, since | «|VuT fludy>0

U= (/ \VuTi flg dy) " \VaT flay:
X

U, U, are probability measure.
Applying (4.2.4) we have that

w(Q) < liminfu, (Q)

t—0

for each open set Q C X. Now, to prove y, —* U, we can use Theorem 1.2.19 (the ’Portmanteau
Theorem’); hence we can conclude because

/ VATl dy — [Dyf|(X).
X t—0



CHAPTER 5

Mosco Convergence

We recall a particular kind of convergence of forms, introduced by U. Mosco in [56], which
implies the convergence of the semigroups and of the associated resolvents (see Section 1.1).
We apply this concepts in some lemmas, in which we prove that, if a sequence of sets {O, }nen
converges in some sense to O (in (R?,.#“) or in (X,7)) then also the corresponding Dirichlet
forms converges: so we have also a convergence of resolvents. This concepts and results are used
extensively in Chapter 7.

The Mosco convergence is a topic currently well known, and the concepts has been extended
for instance in [49].

5.1. General concepts

As usual, — represents the weak convergence.
We recall the following easy result.

LEMMA 5.1.1. i) Let O be an open subset of RY. If f € W'2(0,.27) and { f, }nen is
a sequence in W20, %) which weakly converges to f, then f, — f in L*(0, £%) and
Vf, = VfinL*(0,2¢RN).
ii) Let O be an open subset of X. If f € W'2(0) and {f,}nen is a sequence in W'?(0)
which weakly converges to f, then f, — f in L*(0) and Vi f, — Vy f in L*(0,H).

PROOF. Case i): to prove that f, — f in L?(0,.%4), i.e. f,— f — 0, it suffices to consider
that, for all g € L*(0,.2?), we have that f + (f, 8)12(0,4) 1s in the dual of W12(0, £4), so there

exists ¢ € W2(0,.29) s.t.
(f,8)12(0,20) = (@, w20, 24

hence we have (f, — f, g>L2(07 pd)y = 0 for every g € L>(0,#?). Analogously, we can prove
Vf, = Vfin L*(0,2¢ R?).
Case ii) is similar. O

Let X be a separable metric space and 1 a o-finite measure on (X,5(X)). In this setting a
form a on L?(X, ) will always be a nonnegative bilinear symmetric form defined on a subspace
D(a) of L*>(X) s.t. a(u,u) > 0 for all u € D(a); we set a(v,v) := +oo if v ¢ D(a).

DEFINITION 5.1.2. Let X be a separable metric space and u a o-finite measure on (X,B(X)).

A sequence of forms a,, defined on L?(X, 1) is Mosco-convergent to a form a defined on L?(X, 1)
if:

i) For every sequence f,, s.t. f, — f in L>(X) we have liminfa,(f,, f,) > a(f, f).
ii) For every f € L*(X), there exists f, — f in L*(X) s. t. limsupa,(f,, f,) < a(f, f).

93
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For us, a closed form a is a form s.t. a(u,u) as a functional of u is lower semicontinuous with
respect to L%(X).

For each A > 0, given a closed form o’ on L?(X), we define the resolvent G, as the operator
that to each y € L?(X) associates the only element of D(d') s.t., for all v € D(a’),

d' (G (9),v) +A(GA(),V) 12x) = V) 120x)-
We will use this known theorem ([56] Thm. 2.4.1).

THEOREM 5.1.3. Let X be a separable topological space and (X,.%) be a measurable space
with U a o-finite measure on (X,B(X)); let a be a form, {a,}nen a sequence of closed forms, for
all 0 > 0 let Gg ;, be the resolvent associated to ay, for ©, let G be the resolvent associated to a
for o.

{@n}nen converges to a in the Mosco sense, if and only if. for all 6 > 0 for every u € L*(X)
we have that Gs ,(u) — Go(u).

REMARK 5.1.4. In [56] the hypotheses on G, is that they are the resolvents associated to
the relaxed of a,,: but if a, is closed then it coincides with a,, itself(see [56] Subsec. 1.e).

5.2. Applications

We recall this result (see e.g. [29], Prop. 2.70, in that book the hypothesis is that the set is
uniformly Lipschitz).

PROPOSITION 5.2.1. Let O C RY be a bounded open set with Lipschitz boundary.
If f e WH2(0, 2% then f can be extended to a function g € W' (R4, 24

For O open set in R? we will say say that a is the Dirichlet form associated to W'?(0, £4) if
D(a) = {f|fio € W'?*(0,.2)},

alf,g) = /0 VF(x) Vg(x) dx;

it will be always a closed form in L*(X,.£¢) (i.e. a(u,u) as function of u will be lower semicon-
tinuous respect to L*(X,.£%)).
Now we can state the next Lemma.

LEMMA 5.2.2. Let O a bounded open set with Lipschitz boundary, let {O,},cn a decreasing
sequence of open sets in R? s.t. £%(0,\0) — 0. If a, is the sequence of the Dirichlet forms in
W12(0,, 29 and a is the Dirichlet form in W'2(0, %), then a, converges to a in the sense of
Mosco.

PROOF. We consider the first condition of the Mosco convergence: so, let f,, a sequence of
functions s.t. f, — f in L*(R?, . £N).

By contradiction, we suppose liminfa,(f,,f,) < a(f,f): then, up to a subsequence, f, €
W'2(0,) for all n € N and the sequence V fujo is uniformly bounded in L*(0,2¢ R?) and fujo 18
uniformly bounded in W172(0,$d ), so, by the Banach-Alaoglu theorem (see Appendix) up to a
subsequence, f,jo — g in W'(0,.£?) for some g € W!(0), hence f, o — g in L*(0,.£?), and
Vfuo = Vg in L*(0, 2% ,R?) by Lemma 5.1.1; clearly, g = fi0, s0 fijo € W'?(0,.2“) and

/ IVF?(x) dx < liminfay,(f,, f),
R4
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contradiction.

Now we consider the second condition of the Mosco convergence: let f € L?>(R?, £4), we
look for a sequence f,, s.t. f, — f in L*(R?, 2¢) and limsupa,(f,, f,) < a(f, f).

If fio ¢ W12(0,£%), we can simply take f, := f for all n € N. If fio € wWl2(0,£%), then
we can extend fjp to some g out of O keeping the condition W12 by Proposition 5.2.1; we will
have g € W12(R?, ), and we can define

Falr) = {g(x) ifxe 0,

f(x) otherwise,
and it is obvious that the condition is satisfied. O

For O convex set in R? we will say say that a is the Dirichlet form associated to Wol’z(O, £
if D(a) = {f|f € W"*(0,.27), fipa\0 = 0},

a(f.g) = /0 VF(x)- Vg(x) dx:

it will always be a closed form in L?>(R?, ) (i.e. a(u,u) as function of u will be lower semicon-
tinuous respect to L?(R4, . #4)).

LEMMA 5.2.3. Let O C RY be a convex open set, let {0, } ,en a decreasing sequence of convex
open sets in R? 5.t. O C en On and £4(0,\0) — 0 where £ is the Lebesgue measure. If a, is
the sequence of the Dirichlet forms in WOLZ(O,,,Z‘Z) and a is the Dirichlet form in Wol’z(O,Zd),
then a, converges to a in the sense of Mosco.

PROOF. We consider the first condition of the Mosco convergence: so, let f,, a sequence of
functions s.t. f, — f in L>(R?,.27).

By contradiction, we suppose liminfa,(f,, fu) < a(f,f): then, up to a subsequence, f,o, €
Wol’z(On) for all n € N; so, each f, can be extended as 0 out of O,, an f, € W'2(RY, £4); the se-
quence V f,, is uniformly bounded in L*(R?, £, R?) and f;, is uniformly bounded in W!2(R¢, £4),
s0, by the Banach-Alaoglu theorem (see Appendix) up to a subsequence, f, — g in W12(R4, %)
for some g; clearly go. = 0 for every n, therefore g|oc = 0 because £40,\0) — 0, so 8o €
W()I’Z(O,,,i”d) hence f, — g in L*(R?, £), and V f,o — Vg in L*(0,.2“,R?) by Lemma 5.1.1;
clearly, g = fjo, so fio € w'2(0,2?) and

/ IVf?(x) dx < liminfay,(f,, f,),
]

contradiction.

Now we consider the second condition of the Mosco convergence: let f € L?>(R?, £4), we
look for a sequence f; s.t. f, — fin L>(R¢, . £¢) and limsupa,(f,, f,) < a(f, f).

If fio ¢ W()I’Z(O,,,fd), we can simply take f, := f foralln € N. If fjp € W()I’Z(O,gd), then
we can extend f|o to a function g which is 0 out of O we will have g, € WO] ’Z(On,.,%d ), and we
can define f,, := g, and it is obvious that the condition is satisfied. O

Now let (X,7y) a Wiener space. For O open setin X s.t. O = G~!((—0,0)) for G € L for g < 2
we will say that a is the Dirichlet form associated to W'2(0,y) if D(a) = {f|fjo € W'*(0,7)}.
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a(f.8) = [, (Vuf,Vug) dy; it will be always a closed form in L*(X,y) (i.e. a(u,u) as function
of u will be lower semicontinuous with respect to L2(X, y)).

Let O an open set and {0, } ,en a sequence of open sets in X; hence we can define W!2(0, y)
and W'2(0,,7) for every n € N.

LEMMA 5.2.4. In the above hypothesis, we suppose O C O,, for every n € N and y(0,\0) — 0.
If a, is the sequence of the Dirichlet forms in W'-?(0,,y) and a is the Dirichlet form in W'2(0, y),
then a, converges to a in the sense of Mosco.

PROOF. We consider the first condition of the Mosco convergence: it can be done in same
way of Lemma 5.2.2.

Now we consider the second condition of the Mosco convergence: let f € L?(X), we look for
a sequence f, s.t. f, — fin L?>(X,y) and limsupa,(f,, f,) < a(f, f).

If fio ¢ W'2(0,y), we can simply take f, := f for all n € N. If fjo € W'2(0,7), then
there exists a sequence of Lipschitz functions g, which approximates f in W'2(0,7), s.t. ||gm —
f ||W112(07?,) <m~!; each g,, can be extended out of O with the same Lipschitz constant (for example

with McShane extension, see Appendix), and g,, € W!?(X,y) , hence
/ \Vigm|u® dy — 0
n\O n—oo

and
/ |gm|* dy — 0,
n\O n—yoo

(because O =(;_,0y).
We Remark that we cannot use a simple diagonal argument to conclude, because we have to
define f, for every n, not only up to a subsequence.

For each m, the set

Ay = {aEN\a>m,/ \Vigm|y dy < ml,/ |gm|* dy < m~! forall i > a}
i\ i\

is not empty (because y(0,\0) — 0), and we can define a,, := minA,,, we have that a,, > m and
Ap={a€N,a>ay}; forn e N, n> a, the set

B, :={beNn>ap}

is not empty; for each n, B, is bounded by n (because b < a; < n for every b € B,,), and we can

define b, := max B,,. For n > a;, we have b,, < n, moreover b,, —— o: in fact, for every ¢ € N,
nm—ro0

if n > a. we have c € B, (by definition of B,) and so b,, > c.
Letn € N, n > ay; b, € B, by definition of b,, so by definition of B, we have n > q,,, so,
recalling that O,, are decreasing,

/ Vsl dr= / Vg, dy

Ouy, \O

/ g, dy< / 90,2 7,
0,\O 04 \O

bn

and
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hence, by a;,, € Aj, and by the definition of 4, ,

/ Vsl arn
n O

/ |8b,
\O

we already know that [|g5, — fllw12(0) < b, !, so, if
x) x€O0
fn(x) — gbn( ) n ,
f(x)  x¢ 0,
by b, — o we have that f, — f in L*(X,y) and

n—soo

2dy<b,,

/ \Vafalh d?’—>/|VHf|12LId%
On 0

hence we can conclude.
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CHAPTER 6
1p . .
Classes W, ¥ in Wiener spaces

We deal with the problem of defining WO1 7(0), the functions with zero trace on dO: we define
a function in WO1 P(0) as the limit of a sequence of regular functions which are null out of O.
In [26], a particular kind of sets allows us to define the trace as an operator, so in this setting a
possible definition of WO1 ?(0) is the space of functions with null trace; in Theorem 6.2.2 (which
is the main result of the Chapter) we prove, under certain conditions stronger than that of [26]
(Hypothesis 6.1.3 that for p = 2 the two definitions are equivalent. We also apply the concept of
Mosco convergence (Chapter 5)

We extensively make use of Section 3.5.

6.1. Setting

We will suppose (X, y) is a separable Wiener space (so X is separable): H will be the Cameron-
Martin space, Ry the isometry from Xy in H; for all 1 € Ry(X*), we will set h= R;l(h); we
introduce a basis {4, },cn of H, contained in Ry(X™*); for each n € N,let F;, be the space generated
by hy,...,h,. For each F, we define 7, (x) = Y| hi(x)h;.

L is always the Ornstein-Uhlenbeck operator defined pointwise for regular functions by

8

LG(x) = ] ((DREG(x)hi, hi),, — hi(x)9p G(x) )

where Vg G and the H-second derivative D%, of G are everywhere defined (for bounded regular
functions, it can be considered as the Ornstein-Uhlenbeck operator in L?, for p € [1, 4-eo)).
We recall that p is the Feyel-de La Pradelle measure.

DEFINITION 6.1.1. Cg‘H(X ) will be the set of all the continuous functions (not necessarily
bounded) s.t. Vg f is bounded and continuous as a function X — H.

REMARK 6.1.2. If G € CIL 5 (X) s.t. the H-second derivative D% of G is everywhere defined
and | D% G|ys is bounded in a set O, if [V G|;' € L*(0), then |Vy G|, is H-differentiable in O
and

D4G(VyG)
Vu(|VuGly') = -2
if in addition LG € L(0O) we have that div},% is well defined in every L? for p < co and
div. VHG LG (D}G(VHG),VuG),,
v = -
"IVuGlu — |VuGlu IVuGly

Hereafter we will suppose: O is the sublevel G~!((—o0,0)) of a function G with the following
properties, which implies Hypotheses 3.5.8 and 3.5.10.

101
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HYPOTHESIS 6.1.3. We consider a function G on X and a 6 > 0 such that:

1) Ge Cl; (X)) (hence V4G exists everywhere);
ii) VyG is everywhere H-differentiable, with derivative D%{G such that |D%,G\ Hs 18 uni-
formly bounded (where | - |y is the Hilbert-Schmidt norm);
iii) G1(0) # 2;
iv) |VuGly' € L°(X);
v) LG is bounded on G~ (-3, §).

In the above hypotheses, we define the open set O := G~ !((—e0,0)).

REMARK 6.1.4. i) In the above hypothesis, d0 = G~1(0); we prove it. It is clear
that 90 C G~1(0) by the continuity of G. To prove that G~'(0) C dO we remark that

VG # 0 on G (0) by iv); so, let x € G~1(0), for h = 5 H((g)fH the function g : R — R,
t — G(x+th) is strictly monotone increasing, hence it is null only for z = 0, therefore
x € dO0.

The point iii) implies dO # & for what we said above, and hence O # @ and y(0) >0
because it is an open.

ii) The above hypotheses imply Hypotheses 3.5.8.

iii) The points 1), iv) and v) imply the Hypothes is3.5.10, hence we can define a bounded
trace operator W!*(0) — LP(G~1(0)) for all p > 1. To have this result we could also
substitute iv) with: |VyG|;' € L*(G™1(-8,0)) and |VuG|g' € L1(G~1(0,§)) for all
qg>1.

iv) By the points ii) and iv) we have that ‘VVH ”GG|H € W'2(G1(—8,0),H). By adding the point

v) we have also that div, (‘VV[{%) € L*(G7'(—-8§,8)) (see Remark 6.1.2).

v) The point iv) is very restrictive, for example it is not satisfied by || - | in Hilbert spaces,
which would allow to consider the ball (conversely [26] consider this case).
vi) For —8 < € < 0 the Hypothesis remains true if we substitute G with G + € or with
—G+ ¢, value 0 substituted with 8’ := § — |g|.
viii) By Hypotheses i), ii), we have that LG € LP(X) for all p < oo.

We also remark that we can apply all the results in Subsection 3.5.2, but there W!”(0) was
defined in the sense of Definition 3.5.7, here O is open (because G € C} (X)), so W'P(0) is
clearly that of our usual definition (because in both cases we define the Sobolev space as the
domain of the closure of gradient Vi on Lipschitz functions).

EXAMPLE 6.1.5. If h€ H, X := ht, T, projection on X, we can consider a function F on X
that is twice differentiable with bounded Hilbert-Schmidt norm and s.t. LF € L=(X), then we have
that G(x) = h(x) — F(m,(x)) satisfies all the properties (see also [26], 5.2).

We recall Definition 3.2.3 for W!?(0); also in this case we have Remark 3.2.7: hence, if
f € WhP(0), it can be approximated by a sequence of smooth cylindrical functions.

As we said, we are in the situation of Hypotheses 3.5.8 and 3.5.10. This allows us to (see
Subsection 3.5.2)

e define, for all ¢ € L', densities of the measure ¢pyo G~ ! (restricted to G~!(—§, 8)) with
respect to the Lebesgue measure on R;
e define bounded trace operators Tr : W?(0) — LP(G~1(0),p) for p > 1.
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In the Hypothesis 6.1.3, we can apply Lemma 3.5.18 and for all p > 1, and then for all t € (—6,0)
there exists a bounded trace operator

Tr, : WP (G (—o0,1)) — LP (G (1), p)

s.t. if @ is a Lipschitz function in X hence Tr¢ = Q-1 ;).
We have this two Lemmas, which are derived respectively by Lemma 3.5.11 and 3.5.19.

LEMMA 6.1.6. Under Hypothesis 6.1.3 points i)-iv), let & > 0 and O, := G~ (—&,8); if f
is a Borel function that is in L' (Og), then the function

e f
ar(€) = /G o P

is well defined for almost every & € (—&,&), and it is in L' ((—8,&),-L"); moreover gy is a
density, with respect to £ ! of the measure fyo G,

LEMMA 6.1.7. Under Hypothesis 6.1.3 points i)-iv), for all p > 1, for all t € (—8,9), for all
f € WP (G (—oo,t)), we have that Tr,f = 0 iff the extension of f to 0 out of G~'(—oo,t) is in
whr(x).

REMARK 6.1.8. In Lemma 3.5.19 it is supposed ¢ = 0; but because of Remark 6.1.4 vi), we
can apply the resulttoz € (—8,9).

Now, we recall that for r € G(R), p > 1, g € (1, p), we have that W»(G~!(—o0,1)) is con-
tinuously embedded in W!9(G~!(—eo,t)), and, under our hypotheses, the trace is defined as a
bounded operator from W!4(G~!(—co,¢)) to LI(G~'(¢)) and so also as a bounded operator from
W4 (G~ (—oo,t)) to LI(G~1(2)).

We have this Lemma, which is an easy consequence of Lemma 3.5.13.

LEMMA 6.1.9. Under Hypothesis 6.1.3 points i)-iv), for all p > 1, for all t € (—8,0) for all
feWLP(X), ifq € [1,p) we have

(6.1.1) / \Tr, f|9|V Gl dp =
{G=r}

=g Gy [ palsay=

G~ (—ooyt)

——a [ UGy dr- [ Llsar
G1(t,400) G 1(t,+00)

PROOF. From Lemma 3.5.13 it follows the first equality of (6.1.1) for r = 0 and f precise; by
Remark 6.1.4 vi), we can prove (6.1.1) in general by considering the precise version of f (because
only Hypothesis 6.1.3 i)-iv) are used, equivalent to Hypothesis 3.5.8).

We prove the case f € WIP: if f Lipschitz then it is precise, and then we have only to observe
that Lip is dense in W', that Tr, is continuous as operator in L?(G~'(¢), p), that VG is bounded
and LG € L for all p' < = (see Remark 6.1.4 vii)). O

Now we prove some Lemmas.
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LEMMA 6.1.10. Under Hypothesis 6.1.3 (all the points), for all p > 1, for all & € (0,0) there
exists C > 0 s.t. for all t € (—8y,0), if f € WIP(X) then we have,

612 1Tf ) < U 198 Nir 108100 1 o150

PROOF. Hereafter we will write O; :== G~ (¢, 8).

By density, it isn’t restrictive to assume f Lipschitz.

Arguing as in the proof of ([26], Prop. 4.1), we can introduce a function 6 € C;’(R, [0, 1]) that
is 1in (—oo,¢] and Oin [t + (6 — dp), +o0) (hence, in particular (5 ;) = 0) and 8’ <2 (6 — &))"
we introduce W = f- (6 o G); we have that w € W'?(X) for all p < e (because f Lipschitz and
G € C} ), that 6 0 Gig-1(5 1) = 0 and that, for

Cr=2(8—&) ' IVuG]|=x 1) + 1
we have

W ler (6101400 < 1 f e (o))
and

IV (61 (¢ 400,11y < CLllWlzr(o0,.0)
(recalling the Hypothesis 6.1.3 1)); we have also 111‘671(,) = f and so, we can apply Lemma 6.1.9
and recalling Hypothesis 6.1.3 1) and iv) and that Y|g-1(5 4..) = 0 we have

/ ITe, f1P VGl dp = / T yI?|VaGly dp <
G (1) G (1)

< PIViGli-o.) | o VI Sl T G0 W1y oy <
~1(f, o0
(by Holder inequality)
< PIIVH Gl (0,10 1 W1, 1V Wllr0,) + LGl (0 W12y =

< pCilIVuGlii=0,.n HfHLp onIVafllero,,m) + ILG | =(0) | F I 0,)-

So recalling that |Vy G|y € L*(0;) by Hypothesis 6.1.3 i) and LG € L*(0,) by Hypothesis 6.1.3
v), for some C > 0 independent on f, ¢ we have (6.1.2). Il

REMARK 6.1.11. In the above Lemma, we used for the first time Hypothesis 6.1.3 v); we
needed LG € L*(G'(—§,8)) and not only LG € L*(G~'(-8,0)).
6.2. Results about W, 7 (0)
LEMMA 6.2.1. Under Hypothesis 6.1.3, for all p > 1 there exist C' > 0 and &) > 0 s.t if
f €W (0) and Trof =0 (on G~1(0)) then for all t € (0,80) with & < & we have
P Ay <CPIVEL 10,0
/Gl(_ho) Lr(G-(1,0),H)

PROOF. By Lemma 6.1.7, f can be extended out of O with 0 value, and f € W'?(X); we
consider a 8’ < & and we apply Lemma 6.1.10 for such a &', hence for all s € (—J,0), for some
C > 0 independent on s,

1T 1110 = CUL N1 s o1V 600+ 1 Eors0p) <
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< CUF 1 s IV lero 100+ 1A 11500
by recalling that f = 0in G~!(0, +o0).
We have also, by Lemma 6.1.6 and 6.1.3 iv) that we can define
)= | T VGl dp < ol 1,1
(s

for
Co = IIVuGlg' ll1=(6-1(-5.5));
always by Lemma 6.1.6 we have for all t € (0,0")
0
||f||€p(Gfl(7t~o)) S / q(S)dS S C()t s?()p) ||Trs(f)||€p(G—l(s)7p) S
' —t se (0,

(for some C; = CCy independent on f, t)
-1
< Czt(HfHZp(Gfl(;’o))HVHfHU’(G*I(t,O),H) + HfHIL?p(G—l(t’O)));

for &y < &’ sufficiently small (&) = %Cz_ !independent on f ), forall 7 s.t. 0 <7 < & we have

£ 1 ooy < CHF I g1 op IV lrG 10 HfHU,
and hence
LA s oy < 2Co NP1 IV F im0y <
(by the Young inequality, for all e>0)
<2020 | F 1100y + 2C2€ IV 0y

with € := (4Cytp")~!, for some C3 > 0,

oo < 1 W1 oy + IV 10
and we can conclude. |

The next result (the main result of the Chapter) is the infinite-dimensional version of a well-
known theorem (see e.g. [38] Thm. 5.5.2).

THEOREM 6.2.2. Let O satisfies Hypotheses 6.1.3, and f € W'2(0): the following claims are
equivalent:
i) f €Wy (0);
i) Trf =0;
iii) given the extension of f that is 0 out of O, we have f € W'2(X).

PROOF. The points ii) and iii) are equivalent by Lemma 6.1.7.

It is obvious that, if f € WO1 2(0), then it is the limit of a sequence f, € Cl(0); clearly f,, can
be extended as 0 out of O, and these extended functions £, converges to some f € W!2(X) that is
0 out of O, and f in O; so 1)=iii).

We will prove ii)=-1).

Let f € W'2(0) be s.t. Tr(f) = 0: we will prove that f € WOI’Z(O) by finding a sequence
gn € C}(0) which converges to f in W12(0).
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Let 1 a smooth function s.t. 0 < n <1 everywhere, and 1 is 1 in (—eo,—1] and 0 in
[—1/2,+20), and ' < 0. In our hypotheses, for each m € N, we can define y,, € C}(0) as

() = n(mG(x)) ifxeoO
" 0 ifx¢ 0’
,—L]anditis 0 on G~1(0,4oo]; in O, := G~'(—1,0) we have

(hence Vg X, is continuous and bounded) while Vg X, x\0,, = 0 and, for some C > 0 independent
onm

and clearly, x,, is 1 on G~!(—oo

(6.2.2) IV Xom| 2= 1y < Crm.

{G*1 (—%,0)},,161\; is a sequence of open decreasing sets s.t.

(6.2.3) NG (=m0 =2
meN

For each ¢ € Lip(G~'(—§,0)) or all ¢ € W!2(0) s.t. Trop =0,
/ O |V |7y dy < sz/ ¢’ dy,
0] On
hence, by Lemma 6.2.1, for C’ defined in such Lemma, for C; := CC’ > 0 independent on m, @,
(6:2.4) [ #Vualy av < callolfns,
0

Now, we consider our f € W!2(X) s.t. f =0 out of O; there exists a sequence g, of bounded
smooth cylindrical functions s.t. g, — f in W2(X); fixed g, we consider for m € N the function
fin = &nXm» clearly itis in C}(O). Now,

/|8nXmgn\2d?’=/8i|%m1|2d?’
] O
(X)

2
converges to 0 if m — oo, because ¥, i> llp and g, is bounded. By (6.2.1) we have |V x| <
Mm—>oo

Cm for some C > 0 independent on m; we have that, for each n € N, for some ¢, ¢ > 0 independent
on m,

/0 Vit (gnon) — Vi Sy dy =

= / \8n Vi Xom + X V80 — Vi f — fVaXm + V0 Xm — XV f + XV f|f dy <
0

(by reordering the terms)

SCI(/O(gn_f)2|VH%m’%J dY+/O%31|VHgn_VHf;J dy+

+ /0 Gn— VIV 3y dy+ /0 PIVarml dy) <

(recalling (6.2.1))
< c(m?|1gn— FlI}2(0) + IVr8n = Ve F 7200 +
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[ Vurbars [ PVaafn <
—1(Ow) o
(by (6.2.4))
< c(m?llgn = Fl72(0) + IVEE = Vi L2000 + (1 C)IFl12(0,))-
Now, recalling that g, — f in W!2(0) we have that, fixed m € N, there exists n,, s.t.
/0 Vit (8, o) = Vi £y dv < clm™ + (1 +C) £ 13120,

and, by (6.2.3), the last term converges to 0 for m — oo; so, if f,,, := gp, Xm, it converges to f in
W12 for m — oo and f,, € C}(0) and we can conclude. O

m

REMARK 6.2.3. Thank to the above proposition, we have that, if O satisfies Hypothesis 6.1.3,
then WO1 2(0) can be equivalently defined as the closure in W'2(0) of Lipy(O).

We return to consider the situation of the previous subsection: O will be a set which satisfies
Hypothesis 6.1.3, we will define for all n, G, := Go g ; we define O, := G, !((—<,0)). We
remark that, for each n, G, satisfies the Hypothesis 6.1.3, and it is a cylindrical set.

Here, given the set O = G~!((—c0,0)) and the sequence of sets O, = G, ((—,0)), we will

consider for each n € N the Dirichlet form «,, on WO1 ’2(0,1), ie.

D(a,) = {f € L*(X)|fix\0, =0, fio, € Wy (0n)},

an(fag) :/ <VHf7VHg> d'}/,

On

we consider a the Dirichlet form in Wo1 2(0), ie.

D(a)={f € L*(X)|fix\0 =0, fio € Wy*(0)},

a(fag) :/O<VHf7VHg> dy
By Theorem 6.2.2, D(a),D(a,) C W'?(X) for all n € N.

LEMMA 6.2.4. If f € C}(X), we have, for all p € [1,+0),
1,
fom, w) f.

n—yo0

PROOF. If f, := fomg, we have f, — f almost everywhere by the continuity of f and Theorem
2.4.2, and

Van<x) = ﬂ'-n(VHfo g, (x));
we recall that for each F, C H, for each h € H we have |m,(h)|g < |h|p (75, is a projection in H)
and 7, (h) — hforall h € H; so
Vi fu(X) = Vaf(X) |1 < |70(Vif o (x)) — (Ve f(x))|a+
7 (Ve f ()| =V f ()| <
<|\Vuf(#a(x)) = Vuf)|u + (Ve f(x) = Vi f(X)|u,
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the first term converges to O for almost every x by f € C, g and Theorem 2.4.2, the second converges
to 0 because of the convergence of 7, in H. By the dominated convergence theorem, we can
conclude |

Now, we want to prove the following result.

PROPOSITION 6.2.5. Let G be a function which satisfies Hypothesis 6.1.3, O and O,, defined
as above: if a, is the sequence of the Dirichlet forms in WO1 ’2(0,1) and a is the Dirichlet form in

WO1 ’2(0), then a, converges to a in the sense of Mosco.

PROOF. We have that, p(G~!(0)) < oo, see ([26], Rem. 4.9 (i)) taking into account Remark
6.1.4 iii), hence y(G~'(0)) = 0 (see Lemma 3.5.3).

So in our hypotheses y(G~!(0)) = 0i.e. y(00) = 0.

We consider the first condition of the Mosco convergence: so, let f, a sequence of functions
s.t. f — fin L*(X).

If liminfay,(f,, fu) = oo, there is nothing to prove; so, we suppose that liminfa,(f,, f,) <
+oo, in particular it is not restrictive to suppose that, up to a subsequence, f,, € D(a,) for every
n. Firstly, we prove that fx\5 = 0. We define U, := Ui=, O, it is a decreasing sequence of open
sets. fux\o0, = 0 for each m € N; for each n € N we have f,x\y, =0 for all m > n, and hence
fix\u, =0 forall n € N, because f,, — f in L*(X), so fj = x\v;) =0

We have also that

HXN\ONUX\U)) =0:
i=1

in fact

X\0 = {x € X|G(x) > 0},
hence, for almost every x € X\O there exists nyp € N s.t. G,(x) = Gom,(x) > 0 for all n > ng
(because G is continuous and 7, (x) — x for almost every x € X by Theorem 2.4.2, so, for such

n—soo

a x, we have, for all n > ny, that x ¢ O, hence x ¢ U,,; this yields x € Ui~ (X\U;) .

Hence, fiy\o = 0; for y(d0) = 0, we have that fix\p = 0.

Now, we consider the sequence f,; if liminfa,(f,, f,) = +eo, there is nothing to prove; other-
wise, up to a subsequence, f, € D(a,) for all n € N (hence for what we said f, is in W!?(X) and
fux\o, = 0), and it is uniformly bounded in W12(X), so, up to a subsequence, f, — g in W?(X)
for some g € W2(X); clearly, f, — g also in L>(X) so g = f, therefore f € W!?(X) and

/ \Vufl% du < liminfa,(f,, f,);
X

we already know fx\o =0, then fp € WO1 % because f € WH2(X) and Theorem 6.2.2, and in that
case f € D(a)) and a(f, f) < liminfa,(f,, f)-

Now we consider the second condition of the Mosco convergence: let f € L?(X), we look for
a sequence f,, s.t. f, — f in L*(X) and limsupa,(f,, f,) < a(f, f).

If f ¢ D(a), we can simply take f, := f for all n € N. If f € D(a), then fy € WOI’Z(O) and
Jix\o0 =0, then by definition there exists a sequence of functions gy, € Cé (O) which approximates
finW2(0), s.t. |lgn— fllwi2o) < m™'; we will extend each g, to a function g,, that is 0 on
X\ 0, and g,, € C}(X) by the definition of C} (0), hence || g —fllwrax) < m~; for each g,, we can
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define g, , := gm © 7k, which approximate g, in W!?(X) by Lemma 6.2.4 (because g, € Cll, (X)),
while g,,ux\0, = 0, hence g,,,10, € C4(0n) € W, *(0,).

We Remark that we cannot use a simple diagonal argument, because we have to define f, for
every n, not only up to a subsequence; we conclude with an argument similar to that of the last
part of Lemma 5.2.4.

For each m € N the set

Ay ={a€Nla>m,|gn,i —gm||W.>2(X) <m !foralli> a},

is not empty (because g, — gn), and we can define a,, := minA,,, we have that a,, > m and
Ap ={a€N,a>ay}; forn €N with n > a, the set

B, :={beNjn>ap}

is not empty; for each n, B, is bounded by n (because b < a;, < n for every b), so for every n > a;
we can define b, := maxB,. For such n, we have b, < n, moreover b, — oo: in fact, for every
n—soo

¢ € N, for every n > a. we have c € B, (by definition of B,) and so b,, > c.
For every n > ay, b, € B, by definition of b,, so by definition of B, we have n > a;, , hence,
by ap, € Ap, and by the definition of A, ,

||gb,,,n —gb,,le,Z(X) < bn_l
we already know that || g, — fllwi2(x) < b, !, so, if f, := gp, n» by by — oo we have that f, — f
: n—o0

in W12(X), hence we concluded. O

We recall the definition of J; with zero Dirichlet boundary condition from L?(0) in WO1 2(0).
We can give an equivalent definition: if G5-1 is the o~ !-resolvent of a Dirichlet boundary condi-
tions on O we can always extend f € L*(0) as f that is 0 out of O and

Io(f) =06Gs 1 ().
In the same way we can define J;; ;.
By Theorem 5.1.3 and Proposition 6.2.5 we can easily deduce this Corollary.

COROLLARY 6.2.6. In our hypotheses about O, and O,, let A,, be the Ornstein-Uhlenbeck
operator with zero Dirichlet boundary conditions in L*(0,,), A the Ornstein-Uhlenbeck operator
with zero Dirichlet boundary conditions in L*(0), 6 >0, Js ,, := (I — 0A,) 7!, Jo := (I — 0A) 7,
then for every x € L*(X), we have that Jg ,(x) — Jo(x) in L*(X).

REMARK 6.2.7. We have collected in Subsection 7.3.2.1 some examples of sets satisfying
Hypothesis 6.1.3.






CHAPTER 7

Gradient contractivity of operators

This is the main Chapter of the thesis: a description of its content is in the Introduction; the
concepts of Sobolev spaces in Wiener spaces (Chapter 3), Mosco convergence (Chapter 5) and
that of resolvent (Section 1.1) will be largely used.

In Section 7.1 the setting is defined, together with concepts and results which are used in
Sections 7.2 and 7.4; it is based upon Section 8§ of the paper [12] (due to H. Brezis) about the
resolvent of the Laplacian in finite dimension: if O is a convex bounded set with regular boundary
in X = R¥ and L is the Laplace operator in O with null Dirichlet boundary conditions, if ¢ > 0, if
ye Wol’l (0,2NL*(0,£?), and u := (I — oL)~ 'y (in the sense of resolvents), then

(7.0.1) /]Vu(x)| dx < / |Vy(x)| dx.
0 0

This result is recalled (with some minimal modifications) in Proposition 7.2.4. In this section we
use regularity of solutions of elliptic equations (see Appendix).

In Section 7.2 we extend (7.0.1) to the Gaussian case in finite dimension (with null Dirichlet
boundary condition), adapting the results in section 8 of the paper [12]; here, L is the Ornstein-
Uhlenbeck operator (with null Dirichlet boundary conditions), see Subsection 3.4.1.

In Section 7.3 we use the concepts and the results of Chapter 6, together with the above Section
and Mosco convergence (Chapter 5: we pose a particular condition on O seen in Chapter 6, which
we use to have the Theorem 6.2.2 about WO1 ’2(0); moreover, we impose a condition, that we could

name Gaussian convexity; under this hypotheses (Hypothesis 7.3.5), for y € WO1 ?(0)NL*(0) for
some p > 1, and u := (I — oL)~'y (L Ornstein-Uhlenbeck operator with null Dirichlet boundary
conditions) we have this inequality (Theorem 7.3.7)

(7.02) / Vau| dy < / V] d.
0] [0}

which is the most important result of the section.
In Subsection 7.3.2.1 we provide two applications; one is an epigraph, the other one is in
(X,7y) which represents the Brownian Bridge, seen in Section 2.6.

Section 7.4 is divided in two sections, with two important results.

In Subsection 7.4.1 we extend (7.0.1) to the case where L is the Laplace operator in O
with null Neumann boundary conditions and y € WH!(0, 24)N1*(0,£¢), in Theorem 7.4.4
(main result of the Section). In Subsection 7.4.2, we extend the result to the case where L is
Ornstein-Uhlenbeck operator on O (open convex) with null Neumann boundary conditions and
y € (WH'NL?) (0), Gaussian measure (Theorem 7.4.7); in this section we use Lemma 7.4.2.

In Section 7.5, we want to find a definition of bounded variation function on O condition
which is equivalent to that in [17] (see Section 4.2); in Proposition 7.5.9 we get that, if f €

111
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BV (0) NL*(0) then there exists a sequence of approximations in variation in terms of functions
of WI1(0) N L?(0) (we also use Proposition 3.2.23); in Theorem 7.5.11 we give a version of 7.0.2
for BV functions which are L?(0):

Dy(J5())(0) < [Dyy|(0).

Moreover, with Corollary 7.5.13 (which resumes the main results of the Sections) we have (by
using Theorem 7.4.7) that, under the hypothesis that y € L?(0), it is BV if and only if

limsup/ |Vids(y)| dy < +eo
)

c—0

and if and only if there exists a sequence of functions f, € Wh! s.t. f, — fin L' and

limsup/ Vi fulg dy < oo.
n——+ JO

Moreover, by using a result in [24](thesis) and [23](submitted paper), we can find a result
similar to Corollary 7.5.13 but with the 7; Ornstein-Uhlenbeck semigroup with null Neumann
boundary conditions instead of J5 (Corollary 7.5.16).

7.1. Preliminaries about gradient contractivity of operators

In this Chapter we will consider:

i) R? endowed with the Lebesgue measure;
ii) X = R? with the standard Gaussian measure “;
iii) a finite or infinite dimensional separable Banach space X with non-degenerate Gaussian
measures 7.

In case i), we consider an open set U C R, in the other cases, an open set O C X with some
properties.

In the setting of the Lebesgue measure, we will consider the Laplace operator with Dirichlet
boundary condition Ap on U, the Laplace operator with Neumann boundary condition A; on U.

In the setting of Gaussian measure, we recall the results about Ornstein-Uhlenbeck operator
with Dirichlet boundary condition Lp (Subsection 3.4.3) and Ornstein-Uhlenbeck operator with
Neumann boundary condition L.

For what we said, the operators Ap, A, are associated to contractive strongly continuous semi-
groups and to contractive resolvent semigroups on L?(U,.#?); in the same way, Lp, Ly are asso-
ciated to contractive strongly continuous semigroups and to contractive resolvent semigroups on
L%(0).

In each of thise cases, we define for ¢ > 0 an operator J5 = (I —6A)~! (where A = Ap, Ay, Lp,Ly);
in all cases we have that for y € L2, J5(y) € W'2 (it is regularizing) and we can prove that, for
yewhing?

IVIe W)z < VYl

the case for Ap is proved in ([12], Section 8); we will prove the other cases.

Hereafter u :== Jsy, sou — oLu = y.

Our strategy will be, at first, to prove the result for the finite dimensional case, then for the
infinite dimensional case.
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REMARK 7.1.1. For an open set O, if y € W!1(0) then Vyyy is obviously a countably ad-
ditive vector measure with bounded variation. We have that the functional y — |, olVayla dy

defined from W'!(0) in [0, o), is lower semicontinuous with respect to the Llog% L(O) norm;
analogously, y — [}, |Vy| d.2“ is lower semicontinuous with respect to the L' (U,£“) norm.
We write the simple proof for the Gaussian case (the Lebesgue case is analogous): if

j, Los2O),

n—soo

and y € W1 (0), then (by Lemma 1.2.36)

/ \Veaylg dy=
0

— [ (G-
meN,peLip, , (Q.H),|¢|| =<1/ 0

(by Remark 3.1.17)

= sup / ydivy@ dy =
meN,peLip,, (Q.H),|¢]~<17 0

= sup lim / yudivy@dy <
meN.peLip, , (@.H).lgl=<1"77 /0

< liminf sup /yndivy(pdy:
"% meN geLip,,(Q.H). gl <1 /0

(by Remark 3.1.17)

= liminf sup /(VHyn,(p>de:1iminf/ |Vayn|u dy.
"% meN.gpeLip,,, (Q.H).|ol=<170 e Jo

If O is bounded, we have that the functional is lower semicontinuous with respect to the L'(0)
norm (because divy@ € L*(0) if ¢ € Lipy(0, H)).

We introduce u = Jsy, sou— cLu =y.

Our strategy will be, at first, to prove the result for the finite dimensional case, then for the
infinite dimensional case.

In the finite dimensional case (with measure yu = .24 or 1) the general idea will be to prove
the result for y smooth, and we can conclude because of the density of smooth function in whr,
of the continuity of J; and of the lower semicontinuity of the functional |, olV-ldu.

So, in O C R?, we consider A = A =Y 92, , Laplace operator in C2, for y € C*(0), let
u € C?(0) s.t. u— cAu =y, and

P(S) =Vu(S)l, @e(§) =1/&+|Vu(S)P.

In [12], Lem. 8.2 it is proved that if O is a bounded convex domain with boundary C? then

2
%_G(Pe < |Vy’

€
in each point.
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Our first goal is to prove the same estimate for A =L =A— Y% | x;0,..

So, let y be C*(0); let u € C*(0) s.t. u— cAu =y, then u € C*(U) in each bounded set U
in O due to the regularity and ellipticity of the operator / + 6A (see e.g. [38], 6.3.1, Theorem 3)
hence u € C*(0). In this hypothesis, we introduce ¢ and @; € C*(0) by setting:

P(6) =IVu(S)l, @e(§) =1/ +|Vu(S)P.

Firstly, we prove the equivalent of Lemma 8.2 in [12].

LEMMA 7.1.2. In this setting, we have, in every point of the domain O,

¢?
(7.1.1) $—0L¢8 < |Vy|.
£
PROOF. We will use D; for % and D?j for ax‘?;x_.
i s}
In the same way of [12], we have
d
(7.1.2) @D ;@ =Y DuDju,
i=1
and )
5 Z?:l (Zﬁilei“Dizj“) Z?:l (Zgzl(Di“yZ?:l(D%ju)z)
Vel < o2 < P <
d 2 d d
1 (D,
(7.1.3) < M Y Djuw)? < Y IDjul,
e = =1
by using (7.1.2) we have
D} =D;=— =
(]

d
Zf'lzl ‘Dizju|2 " Zi:lDi“Djﬁ” B Z?:I Dj‘PeDi”Dizju
Pe Pe ¢} .
We recall that, for each f € C~,

(7.1.4) =

d
DiLf(§) = AD;f(§) = Y D} f(§)&;— Dif (§)
j=1
and, for all &,
d
LD;f (&) = AD:f(§) ~ ;D%j (£)8;=DiLf (&) +Dif (&):

SO,
(7.1.5) D;fLD;f > D;f D;Lf.
Now, by using 7.1.4 and 7.1.2, we can do the calculation, for all & € R4,
PeLPe(8) = (0eAPe) (&) — 0 (E)Ve(E) - € =

B Z%:] ’D%ju‘z Y, DiuAD;u Z?szl D; (pgD,»uDl.zju
|\ (2 * Pe - 0z (&)F
t
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—@e(E)Ve(E)- &=

d d 2
Zf'{j:1 |D,2j”\2 " Z?ZIDiuADiu _ ijl D;pe (Zizl Di“Dij“)
(0 (2 (Pg

- £

d
— Y & (DuDju) (&) =

ij=1
(by using one more time (7.1.2) and reordering the terms)

d d d
- % @)+ £ o) (a0uie) - Ea0iue))

QY] Dj@eD;pe
o

d d
= ( Y |D?ju|2+ZDM3DiM> (&)= Ve (&) >

ij=1 i=1

(&)=

(by (7.1.5))
d d
> Y IDjul(8) + Y Diu(§)DiLu(§) - [Voe *(§) =
ij=1 i=1
(recalling (7.1.3))

d d
= <Z ’D?ju\z‘i‘ZDiu(GlDiM—GlDi)’)> (&)= Ve (&) =

ij=1 i=1

d
= (Z \D?julerGlIVu!z—GlVM'Vy) (&)= IVeel* (&) =

ij=1
(recalling [V |* < sz,jzl ]D?ju\z)
> (o7 '9? — o o|Vy]) (£);
then

—G QL+ ¢° < 9|Vy),
and, since % < 1 we can conclude.

DEFINITION 7.1.3. Let O be a domain with a C2-regular boundary 9O i.e. for each point
x € O there is a ball B centered in x, s.t. dONB is locally the graph of a C? function ¥, s.t.
Vy¥(x) = 0; we say that O has positive mean curvature in x if AW, is positive in the point

corresponding to x with the positive direction of the axis entering in d0).

It is easy to see that a regular convex set has positive mean curvature in every point of its

boundary.
This result is ([12], Prop. 8.1) rewritten:
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PROPOSITION 7.1.4. If O CR? is an open, bounded set with C*%* boundary with positive mean
curvature; if Jo = (I — 6A)~! with A Laplacian operator with Dirichlet null boundary conditions
then

/ V6 ()| (1) dx < / V| (x) dx
(0] (0]
forally e (Wy'(0,.27).

REMARK 7.1.5. We imposed C>* to have that J5(y) is C>(0) (see Appendix); this condition
is necessary in the proof of ([12], Prop. 8.1).

In Prop. 8.1in[12], O must be convex, but in the proof it is used only the fact that the boundary
has positive mean curvature.
The proof of ([12], Prop. 8.1) is very similar to that of the Proposition 7.2.4 in the next section.

7.2. Case Dirichlet

7.2.1. Case Dirichlet O # X, finite dimension. We will consider R with the standard Gauss-
ian measure y?. We will suppose O C R¢ is an open Clzv’f‘ regular set. which means that O = {g <
0} with g € C,zl;g (R?) with o > 0). We will impose on the boundary a kind of condition of positive
Gaussian mean curvature.

Under such conditions, we define L Ornstein-Uhlenbeck operator with zero Dirichlet boundary
condition, that is, L is associated to the Dirichlet form in WO] 2 (0O) in the sense of Definition 3.2.12).
We want to prove that, if Jo = (I — 6L)~! (where L is the O), then

(72.1) [ 1vselar' < [ 1wy’ vy e g nro)

We define the (inner) mean curvature of dO at a point as Ay where y is the function of the
graph with the axis oriented inside O.

Equivalently, if O = {g < 0} with g € C?(R?), we have that the mean curvature on the point
of dO is

_ Ag  D’%(Vg,Vg)
Vsl Vel?

(7.2.2) Hjo

considered as a bilinear operator.

REMARK 7.2.1. To be more precise, Hy( is the sum of the principal curvatures and the mean
curvature is given by d%]Hao-

We recall the Definition of Wol"p(O) (Definition 3.2.12): let f € W()l’p(O), then it is a limit
of functions in C(l)(O); we have that it can be approximated by a sequence of functions f, in
Cl(0) with bounded support (because ¥ is a finite measure). This means that f, € Wol’p (0,24,
0, we can construct a sequence of approximating functions which are in C.(0O), such that they
approximate f also in f € W, (0).

DEFINITION 7.2.2. If O C R? is a set with boundary Clzt;g‘—regular, the Gaussian mean curva-
ture in a point x € d0 is Hy,(x) = Hyp(x) —x - Voo where Hy is the mean curvature and vy is
the outer normal to d0.
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We will suppose that O is bounded and that it has a Clzc’)oé boundary for some o > 0, with
everywhere non negative Gaussian mean curvature.

Now, we define L as the Ornstein-Uhlenbeck operator in O with zero Dirichlet boundary
condition; we introduce J in L'(0), and, for each y € L*(0), the function u = Js(y) is well
defined and belongs to WO1 2(0).

Now, we suppose that y € C(0), by Remark A.0.1 (in the Appendix) we have u € C2(0).

We can define @ = |Vu| and ¢ = \/€ + @2, we will find the equivalent of the Lemma 7.1.2.

We will change the coordinates in a way such that 0 € dO, and that dQ is the graph of a
function y : RY~! — R, with w(0) = 0, Vy/(0) = 0; the graph is oriented with the outer normal
downward. We redefine u, ¢ and @, in this case (the main difference will be that now ¥ is not
centered; we denote the new center by x).

LEMMA 7.2.3. In the above hypotheses,
Dy e (0) = (Dau(0))* (€2 + (Dau(0))?) 2 (Ay(0) — xa).

PROOF. We repeat the argument of [[12], Sec. 8]. Arguing as in the proof of [12], (8.11), we
consider that u(&’, w(&')) = 0 where &’ € R~! and then we have

Diu +DdI/tD,'l[/ = 0,
Dy +2D3uD;y + Dy (Diy)* + DauDiy =0,
and D;y = 0; hence we have D;u(0) = 0 and
D2u(0) 4 Dyu(0)DZy(0) =0

for alli <n—1: so (recalling that L can be applied to u also on the boundary because u € CIZUC(O_)),
we can write

Lu(0) = D34u(0) — Dgu(0)Ag y(0) — Dgu(0)(0 - xg),
clearly Lu(0) = 0 because u,y are 0 on 0, so
Dju(0) = Dgu(0)(Ag w(0) —xq);
by (7.1.2) we have

D,-quliu
1

d
@Dy =
i

(this is true also on the boundary, because u € C2 (0)) so, using the above equalities, we have

loc
9eD49e(0) = Dyuu(0)D3,u(0) = (Dgu)*(0) (A2 w(0) —x4)
and we can conclude. O

Now we can argue as in the proof of ([12],Proposition 8.1); we assume that the outward normal
to d0isn = (0,...,0,—1), then %—‘Tpf(O) = —D,¢¢(0), and that |D,4u(0)| = |[Vu(0)| = ¢(0), since
ujpo = 0 we have
¢*(0)

(Ay(0) —xg) = — 0:(0) (Ap(0) —xa);

Q.
an

(Dau(0))?
¢:(0)

0=~
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but Ag’ y(0) —xg = Hg(0), and, by hypothesis, H; > 0. Now,

1 d Q.
L J—
/%dy’ \/ﬁaw?n 0 dsS<0,
]

where g(x) := (271')_% exp —-5- and S is the measure given by the area of dO.
Now, integrating 7.1.1, we have that

2
Tay o [ Lp.ar < [ [war.
(1 0] 0]

(P2
/daf’s/w dy',
0 Pe 0

by letting € — 0, we obtain the inequality 7.2.1.
The previous computations has been done for y € C°(0), but for the density of C°(0) in

WO1 (0), by the Remark 7.1.1 and the continuity of J, in L?, we have proved the next Proposition.

hence

PROPOSITION 7.2.4. InR?, ifOC X isa Clzgz-regular set for some o > 0 s.t. Hy,(x) > 0 at

each point x € 90, if 6 > 0, L is the Ornstein-Uhlenbeck operator on L*(0) with zero Dirichlet
boundary conditionn and J := (I — L)~ 1,then

[ 19l art < [ il ay
0] 0
forally € Wol’z(O).

REMARK 7.2.5. The above Proposition could be easily extended to the case y € (WO1 2N
L?)(0), but we are more interested to the infinite dimensional case, in which the extension is
impossible with our instruments.

7.3. Case Dirichlet O # X, infinite dimension

We will use the notations of the above chapters.

7.3.1. Cylindrical case. For some o > 0, let O be a cylinder, O = O; % X”L, where O C F;,
(Fyy =< hy,...,hy > subspace of Ry(X")), X,ﬁ is the closure in X of F1 (orthogonal of F in

H), O, is a regular set in F with Clz(’)oé—regular boundary: i.e. there exists g € Clzo’f (F)s.t. O =
g ' ((—o0,0)); if we define G(x) := g(/t;(x),...,/n(x)), we have that O = G~!((—c0,0)), and we
can define the space W' (0) and WOI”’(O).

DEFINITION 7.3.1. .#C}(0) will be the set of all C! cylindrical functions that are 0 on 9O:
y € FCYO) if y(-) = v(hi(-), ..., () for some v € Cé’b(Ol) i.e. v € CL(R") with support in
0.

REMARK 7.3.2. For Wol’p (O) we follow the definition of 3.2.12; it is equivalently defined
as the closure in norm W1? of #C}(0): in fact, if f € C}(0), and if f, := E, f is the cylindri-
cal approximation relative to F, (see Section 2.4), clearly f, will be 0 out of O and f;, — f in
W!'P(X), and we can write f,(x) = v(hi(x),...,h,(x)) where hy,...,h, € H and v € C}(F,) (we
have supp(f,) C O x F1).
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The following Proposition will be generalized in Theorem 7.3.7.

PROPOSITION 7.3.3. In the above setting, if Hj,(x) > 0 at each point x € 90, if 6 > 0, L and
Js are the operators associated to the zero Dirichlet boundary conditions, then [,|VyJs(y)| dy <

[o|Vay| dy for all y € Wy *(0).

PROOF. For each n > m, we define O, := 7z (0), we have that O is isometric to O, x X",
and O, is isometric to O,, X R"™™,

At first, we suppose that y € .ZC}(0) and that there exists n > m s.t. y(-) = v(h1(-), ..., ("))
for some v € C3(0,). On L?(F,) we can define the Ornstein-Uhlenbeck operator L, and the
bounded operator J , with respect to O,, in the case Dirichlet; we will have that

(Jonv) 0 7, = Jo,
moreover
IVayll cio,m) = VY Lo, 7
and
IVadoyll vio.m) = Vo nvll 10, me)-
Hence, by using Proposition 7.2.4 we have

/ Vido ()l dy = / Vo] dy' < / Vvl dyt = / V| dv,
o 0, 0, [0}

and we have concluded, in the case ZC}(0).
Now, let y be in WO1 ’2(0); it can be approximated in W!? by a sequence of function y, €
F C& (0) by Remark 7.3.2; we already know that Jy, converges to Jy in L?; we have that, for a
: 1,2
couple of function y,,y, € W, “(0)

/0 V1206 o — vy < /0 V51 O — y) 1.

s0, by the linearity of Js and of Vg, we have that J;y, converges to Jsy in WO1 ’2(0). So, if we
extend those functions to 0 out of O, we have a convergence in W!2(X) and so also in L?(X)

and Llog% L(X); and by lower semicontinuity of the functional [, olVa-|u dy? with respect to
Llog% L(X), we can conclude. O

7.3.2. Generalization to non-cylindrical case. We recall a technical remark that will be used
later.

REMARK 7.3.4. If {a; , }ic1 nen for some set [ is a sequence, then
sup{limsupa; ,|i € I'} < limsupsup{a; ,|i € I};
n—o n—oo
in fact, foreach je I, n € N
ajn < sup{a;,|i €I},
)

limsupa;, <limsupsup{a;,|i € I},
n—soo ’ n—soo ’

hence we can conclude.
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We will use the hypotheses and notations of Chapter 6.
In this setting, for a regular function f on X, we can write

Zahhf Zahf

7, will be the projection on F,, = (hy,...,h,). For a function g on R”, we define, for all n € N

n

Log(x) =) d7ig(x Zatg

i=1

We recall that if O = G~!(—o0,0), 90 = G~!(0); we have that O has in each point an outer
H-normal that plays the role of the outer normal to dO.

The next Remarks are inspired also by [28].

We define, for all n € N, the cylindrical function G, = Go 7, and

LGy(x) . D%iGn (%) (VG (x), VG (x))
Vi G (x) |1 [VeGa(x)]3
For n € N, we will call 0, := G, ! ((—,0)), it will be a cylindrical approximation of O; then

0, will be a cylinder C,, x Xy for some Banach space Xy and C, = g, ' ((—o0,0)) where g, : R" — R,
gn» = G ol where I is the identification of R"” with O,;; we introduce on R” the function

Lugn(x)  D?gn(x)(Vgn(x), Ven(x))

[Ven(x)] Vgn(x)]?

(where L, is the Ornstein Uhlenbeck operator for smooth functions in F;, with Gaussian standard
measure Y"); clearly we have

Hau(x) =

H,(x) =

H,=H,om,.

HYPOTHESIS 7.3.5. We suppose that Hypothesis 6.1.3 is verified, and moreover that for some
k € N, we have 1 (Vi G) # 0 on dO and that Go 7, is Clz(’)oé in F, for all n € N.
We suppose that, for some ny € N, H,(x) > 0 for all x € O, for all n > ny.

We remark that, in the above hypotheses, we can apply Corollary 6.2.6 because Hypothesis
7.3.5 contains Hypothesis 6.1.3.

REMARK 7.3.6. If n > k , then g, is C*% and satisfies the hypothesis of the implicit function
theorem (because 7x(VyG) # 0) and G, is an open set with C>%* boundary (see e.g [36], Appendix
A, Corollary A.4).

Co =8y ((==0,0)),
and on dC,, = g, ' (0) we have vy¢, = |V »1- On the boundary, }, (x) coincides with the Gaussian
mean curvature defined in Definition 7.2.2: in fact for x € dC,,, recalling (7.2.2),
Agn  D’gn(x)(Ven(x),Vgn(x)  Vau
Vel Ven(x)]? Vel

In particular, if H,(x) is always positive, for all n € N the set O, satisfies the hypotheses of
Theorem 7.3.3.

Hjc, (x) = Hyc, (x) —x- Vo, = = Ha(x).

As usual, u := Js(y).
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THEOREM 7.3.7. Let O be an open set which satisfies to Hypothesis 7.3.5, if c > 0, L is the
Ornstein-Uhlenbeck operator with zero Dirichlet boundary condition on O, and J5 = (I — GL)_l,

then [,|Vyulp dy < [,|Vaylg dyforally € WO]’Z(O)-

PROOF. By Remark 7.3.6, and by Proposition 7.3.3, we have that, for all n > ng, (ng defined
in Hypothesis 7.3.5) if y € WO1 ’2(0n), if L, is the Ornstein-Uhlenbeck operator with zero Dirichlet
condition in O, if Jo, = 6~ 'R(67", L), then [, [ViJo ()| dy < [, [Vay|dy.

We will suppose y € C}(0) (hence y € L*(0)), hence we can define, for every n € N, the
cylindrical C' function y, = yo 7, then y,, € Cé (0,) and we can define u, = Js »(y,) in L?*: hence
u, € W2(0,) and

/|VHMn!Hd}’§/ \Veaynlu dy
On O’l

by Proposition 7.3.3.
We remark that, by Theorem 6.2.2, y, can always be extended to X, by setting y, = 0 out of
O, (and y can be extended to X in the same way). Now, by Lemma 6.2.4 we have that

/ WHyn’Hd}’%/VHY\H dy.
0O, 10)
We have

n—ee [ n—=e [ 0

We remark that u € WOI’Z(O) and u, € WOI’Z(O,I) for every n € N, hence by Theorem 6.2.2,
we can extend u, u, to functions i, i, € W'?(X) (@x\0 =0, dyx\0, = 0). By Corollary 6.2.6, we

have that u, — u in L?(X) (and then also in Llog% L(0)). Hence, by Remark 7.1.1
IViullpx my < lirfgglfHVH”nHLl(x,H)-

Now by (7.3.1), we can conclude

/|VHM\H d}’</|VHy’H dy,
0 0

in the case of y € C}(0). For the case Wol"z(O), we recall that C}(O) is dense in Wol"z(O) by

Definition 3.2.12, and then we can conclude because Jg is continuous from L? in L2, because LP?
1

is continuously embedded in Llog2 L and |, o |V | dyis lower semicontinuous with respect to

Llog% L. g

7.3.2.1. Examples .

Example 1. Epigraphs. Let X be a Hilbert space (see Subsection 2.5). We consider a basis
{hi}icn in Ry(X*). We want that O = G~!((—0,0)) is a the epigraph of a function.

For simplicity, let ® be a function on all X, we suppose dj, (P) = 0 everywhere (so, P can be
seen as a function with domain given by an hyperplane of X, ®(x) = ®(x — m;(x))) and we set

G(x) := Iy (x) + D(x).
Now, on & we suppose (in addition to dj, (P) = 0 everywhere): $om, € Clz(’)oé (F,) for every
n € N (by identifying F, with R"), for some o« > 0; Vy® € Ry(X*) everywhere, |Vy®P|y and
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|D2,®|ys are bounded, and, for some C,C},C,,C3 > 0 independent on /,n € H, we have ¢ (x) > C,
|D}®|us(x) < Ci, V®(x)(x) < C, (s, as usual the function Ry(X*) — X*) and

oo

Y ID3 @ (x)) (his hi) | < Cs
i=2

for every x € X, with C; +C, +C3 < C.
Now, forn > 1,
G(x) = I (x) = P(m, (x) — w1 (x)),
(it is C>* on F,) hereafter we will write y, (x) := 7, (x) — 7 (x), 50 G, (x) = A1 (x) — D (y,(x)); then

VuG(x) = h + VP (x—m (x)),
(clearly m,(VyG) # 0 everywhere for every n)
LG(x) = —hy (x) + L®(x — m (x)),

VuGu(x) = hy + 7, (VEDP(ya(x)))

LG, (x) = —h (x Z —Dy P (v (%)) (his i) + i (x) (Da®(ya(x)) i)y )

and by ([26], 5.2) the Hypothesm 6.1.3 is verified; moreover, on G~! (0) we have

H () = 20 )  D}G(x)(VeGa(x), Vi Ga(x)) _
n |VHGn()C)’ |VHGn(x)|3

(since hy (x) = —®(x) in G1(0))
_ () + X0, (=D PO (x)) (his hi) + hi(x) (Da®(yn(x)), hi) )
V1T (Vi@ (), ki)
 DEP(0a (%) (VP (%)), VaP(ya(x

(14 2 (Vi@ (), 1}

+

S

(%))

B

[T

hence we have
H, (x) >

P(x) X125 IDF PO () (hi i) 1 — Y ®()()
1+ T (Vi) i)
D () Vi Pl

\/1+z (V7 (x)). )
C— C] Cz—CS

¢ L4 T2 (V3 (), i)
then G satisfies Hypothesis 7.3.5.
In particular, if ® = C > 0 everywhere, it satisfies the above condition: so, the halfspace
{h) < —C} satisfies the condition if C < 0.

>

> 0.
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Example 2. Pinned Wiener space (Brownian bridge). For this example, we refer to ([28],
Example 5.4).

Let Y = C([0,1]). We recall the concept of Brownian Bridge (see Subsection 2.6.3); it is
represented by a Wiener space (X,7%y) where X = L?[0,1], the Cameron-Martin space is H =

Wol’z((O7 1)). We remark that, for every h € H,

1
(73.2) 1lleqouy < / W) dt < Vhlys 0.1y, =
0 0

We assume that g € C>%(R) is a function with bounded first and second order derivative in R
(let ¢ be the Holder constant of g”) such that, for some C > 0, for every £, € R,

(7.3.3) 18"(&) —&" ()| < CIE—n|(IE] +n)),
(so, in particular g” is Lip),.) and moreover, for some a > 0, & > 0 and B; B> € R it satisfies
|g'(§)| > a (hence g'(&) # 0 for every &) and

(7.3.4) og(&)+ P <&g'(§) < ag(é)+B

forall £ € R.

The above assumptions are satisfied by g = p/q for g positive polynomial of degree n € N and
p polynomial of degree n+ 1 s.t. g'(§) # 0 for all £ € R (in this case, g has an asymptote /, the
angular coefficient of / will be ).

lgll2
PROPOSITION 7.3.8. Given r in the range of g and r < a; ' (— B — Zb(m) ), we define

1
G(x) ::/O g(x(s))ds—r

on X; we have that O := G~!((—,0)) satisfies Hypotheses 7.3.5(see also proof of [28], Prop.
5.1).

In fact, G is Fréchet differentiable with gradient given by

1
(DG()) (k) = /0 ¢ (x(s))h(s) ds,
so G is H-differentiable and, for every h € H,
1
(ViG) by = / ¢ (x(s))h(s) ds
0
SO 1
VaGE < [ 18 GO)P ds < el e

and moreover for x,y € X,
1
VG(3) = VGO < [ 185 = (o) ds <

2
< llelEqo, 1x =yl
hence G € C[l (X,H), D%{G is everywhere defined and, for every i,k € H,

1
D3,G(x) (1, k) = /0 ¢" (x(s))h(s)k(s) ds.
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Recalling (7.3.2),
|D12L1G(x)(h,k)| < H8||c,§(R) Hh”c([o.,l]) HkHC([o,u) < Hg”cg(R)’h|H|k\H,

and so
(7.3.5) ID%Glus < 18l m)
Moreover, fixed &,k we have that if x;,x, € X

D3 G(x1) (h, k) — Dy G(x2) (h,k)| =

1
/ (8" (x1(5)) — & (xa(s))A()K(s) dis| < / o1 (5) — xa(5)| “h(s)k(s) ds <
0

(if ¢ is the Holder constant of g)

< clhlx|klx b —x2|®

hence G is C*% on every F < H with dim(F) < oo

If I € g7'(r) (I exists because r is in the range of g), if x(s) = [ for every s € [0,1] then
x € G71(0), so
(7.3.6) G 10)#2.

We recall that in Subsection 2.6.3 is defined an orthonormal basis {e;};cy With eigenvalues
A = (7k)~2, and H has an orthonormal basis of eigenvector /i = {272~k sin(k7-) }xen.

For hy(s) := v/2n~ ' sin7s (hy (s) > 0 everywhere), by g’ > a we have that for every x € X

1 1
[(VaG(x),h1)y | = V2r! / g (x(s))sin7ms ds > ﬁﬂt—la/ sin7ts ds = 2vV2n 24 > 0
0

0
s0 |m,(VuG)|a # 0 everywhere for every n and

(7.3.7) \VuGl,' < mla 122 ‘[

(because | |4 = 1).
If we consider the sequence /; we have that the series ) h,%() converges uniformly to
fls):=s—5°
in [0, 1]: in fact (by the duplication formula of cosine)
B (s) = w2k %(1 — cos 2kms)

converges uniformly (because ZZ; k=2 is a convergent series) and if we expand f in Fourier series

of cosines we have

1 =
fs) = 6 Y 7%k ?cos2kms

and
400
Y=
k=1

(the above formula is the solution of the Basel problem, see e.g. [34]). Now we have

ZDHG (hi, hi) Z (VuG(x), hi)y =

i=1
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1

¢ (x(5))(s) ds — / ¢/ (x(s))x(s) ds =

0

oo 1

170

1 1
= [ &)= ds— [ xloo)
clearly fol g (x(s))(s — s%) ds is bounded because g € Cz(R), and, by (7.3.4)

1 1
/ ¢ (x(s))x(s) ds < / (ug(x(s)) +B1) ds = aG(x) — ar+ by
0 0
and 1 1
/ ¢ (x(5))x(s) > / (aag(x(s)) + Bo) ds = aG(x) — ar + Bo;
0 0

therefore LG is bounded in G~!(—8,8) (for every & > 0); so, by (7.3.7) and (7.3.5), we have the
Hypothesis 6.1.3.
For n € N, and x € d0,,, we consider ¢, € H C X = L*([0,1]) as @, := V5 G,(x) (50 |@u|n <
I 8||2c§(R) everywhere), 7, projection from X in F,, =< ej,...,e, >,
n
fals) ==Y 277 'k~ sin ks,
k=1

1 1 1
/fndss/ fds=1;
0 0 6

we have that, for some sequence { L }ren,

we have f;, > 0 everywhere, and

Ou(s) = Z Uy SinkTTs.
k=1

Hence .
|Oalr = YA 1
=1

i
SO

(Pu(s))* < (Zn‘,/lklu,3> (Z Aksinzkns> <
i=1 k=1

= | @ulz fa(s),
therefore in particular
0>
(7.3.8) fa——5 >0
Pl
and

1 1
LG(x) = /O ¢ () (8)) fils) ds — /O ¢ (7,(3)()) 7, () s) ds
herefore
t LGy(x)  DyGu(x)(VuGa(x), VEGy (%))

Hlx) = \VuG,(x)|u |VHGn(x)|;J
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 Jo 8" ®m)($) fuls) ds — o & (Talx) () Ta(x)(s) ds Jy & (a(x)(s)) 3 (s) ds _

“Pn|H “PH‘H

~loii'( [ ' m0)() (fn o (?) ds+t

[

- /0 ¢ (7 (x) ()T (x)(5) ds) >

(by (7.3.8) and by (7.3.4))

-1 " (Pr%(s)
> ol </ ¢ (m@) o) (f— P8 ger
{s€[0,1]]g" (7, (x)(s)) <O} |@nl

1
- /O 01g(7u(x)(5)) + B ds >

(by the fact that, in the first integral, g" (7, (x)(s)) < 0 everywhere)

> Lol / & (1 () (5)) fu ds+
{s€[0,1]|g" (m.(x)(s)) <0}

1
- /0 01g(7a(x)(5)) + Br ds) >

(fn > 0 everywhere)

1
> o' (sl | oot

1
- /0 01g(7a(x)(s)) + B ds) >

Oy [} fuds <1

) 1
> [guls (— ”g”gb<R> ~a [ am0) ds+ﬁ1> =

Hchz R
= “Pn|;11 (‘ 6h( ) —a1Gu(x) —our—By | .

lgll
Tu(x) = [9ul' <— S ) 20

in our hypotheses about r. Hence, we have all the Hypotheses of Theorem 7.3.7.

Now, if x € G, 1(0)
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7.4. Case Neumann boundary conditions

7.4.1. Case Neumann boundary conditions, Lebesgue measure. Firstly we consider the
case with Lebesgue measure.

We suppose X = R? and O is an open, bounded and convex set.

We define J5 = (I — GA,(,I where Ay is the Laplacian on O with Neumann condition.

REMARK 7.4.1. If O is bounded has C*-boundary, and y € C*(0), A is an operator in O which
is strictly elliptic on bounded sets (see e.g. [43]), then u := (I — 6A) " 'yisu € C*in O.

In fact, for each R' > R > 0, we can consider two balls Bg, Bg centered in a point of d0, and
a smooth function 0 that is 1 on By and 0 out of By, and a bounded set with smooth boundary C
s.t. CNBg = ON Bg; hence, v := Ou will be the solution of a Neumann problem

oclv—v=g inC
Vv-vy30=0 ondC

(where V¢ (x) is the normal vector to dO in x) for some g that is in L*(C,.£“) (because u €
W12(0,£%)) and L is strictly elliptic on C; therefore, v € W>2(0 N Bg,.£4) (e.g. by [21], 9,
Rem. 24), hence u € W?2(0 N Bg,.#?) (and this for all R > 0). By repeating the argument,
we can find that u € W52(0 N Bg,.£?) for all k € N and R > 0 (at each step, by knowing that
u € Wk2(ONBg, £4) we can find that g € W=1:2(C, #4) and hence u € W**12(0O N Bg, £%)).
So, u has a representative in C°°(O) (see e.g. [21], Cor. 9.15).

In the same way, we can prove that, if O has C”-boundary in a neighbourhood B of a point
X0 € 00, and y|pnp € C=(ONB), L is an operator in O which is strictly elliptic on bounded sets
(see e.g. [43]) and u := (I — oL)~'y we have that u;5.5 € C*(ONB).

We Remark that, when L is strictly elliptic on all O (as in the case of Laplace operator), the
passages are simpler (e.g. by [21], Rem. 24); we will use the case of L locally strictly elliptic in
the next section.

We prove, in some steps, that

/0 Vo (y)|(x) dx < /0 IVy|(x) dx.

LEMMA 7.4.2. Let O be an open convex set s.t. 0 is C*(0), if u € C'(0), and Vu in xg is

orthogonal to vy (orthogonal to d0), and @¢(E) = /€2 + |Vu(E)|?, then vy - Ve <0 in each
regular point xo of 0.

PROOF. We have, for 7.1.2

D*u(Vu,vy0 )
(23
where D?u is the Hessian operator of u, considered as bilinear operator in R¢.
Now, we observe that Vu- vp = 0 (i.e. Vu is tangent to dO in each point) because u € D(Ay);
90 is regular, hence we can consider it as the sublevel of a smooth function g € C*(RY), s.t.
0 =g ((—,0)), 00 =g 1(0) and v, = Hg—gu on dO. If we consider the tangent plane 7), in a

V&O'Vq)s =

point p € dO, we will have that g > 0 on the plane 7}, and g(p) = 0, so p is a local minimum point
on 7), for g; hence, the Hessian D?g in p restricted to the vectors of T, is positive semidefinite.

Now on dO we have
(Vu,Vg) = (Vu,vy0) =0
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because Vu is on the tangent; we can consider (Vu,Vg) as a function on O which is constant on
d0, hence V((Vu,Vg)) is normal to dO in each point of dO; so, recalling that Vu is tangent to
20,

(7.4.1) 0=V((Vu,Vg))-Vu=D*uVg-Vu+D*¢Vu-Vu;
D?g in p restricted to the vectors of T, will be positive semidefinite (because of the convexity of
0) so
D*gVu-Vu>0,
due to Vu is tangent to d O, hence, applying (7.4.1).
D*uVu- Vyo = D*uVu-Vg=—-D*¢Vu-Vu <0,
and we have concluded. O

LEMMA 7.4.3. If O C RY is convex, open and bounded set with C* boundary, then

/0 VIs()|(x) dx < /0 1V](x) dx

forally e Wh (0, 2 N1L*0,LY).

PROOF. We recall the lower semicontinuity of the functional [, |V -|(x) dx with respect to the
norm L', and that J is a bounded operator 2 12

Let y € Whi(0, 29 NL*(0,£?). Tt is clear, by truncation, that y AnV —n converges to y
both in Wh1(0,.#?) and in L?(0,.£¢). So, it is not restrictive to suppose y € W'(0, 2N
L=(0,.2%); now, we know that y can be extended in W!!(X) (because O is convex) and this
extension can be truncated to the same ||-||,. norm of y; the extension can be approximated by
convolutions (which converges both in W!-'and in L?): so, it is not restrictive to suppose that y are
restrictions of functions in C**(R?).

So, let y be smooth in O: hence we can apply Lemma 7.1.2; moreover, by Remark 7.4.1 we
have in this case u € O.

Arguing as in ([12], 8) we can suppose that ¢ = 1, and we introduce ¢ and @ € C!(0) (with
€ > 0) in a similar way

@) =Vu(G)l, () =/&*+[Vu(E),
and we can prove )
¢
P Age < |Vy|

€
exactly in the same way of ([12], Lemma 8.2).

If we integrate, we have
2
/ (P—(x) dx—/A(pg(x) dx =
0 Qe 0

2
= / q)—(x) dx—/ Voo Ve dS < / |Vy|(x) dx;
0 Pe 20 0
by Lemma 7.4.2, we have v, - V@, < 0 in each regular point on dO, hence

(p2
P (x) dx < / V] (x) dx,
0 Qe 0o
(p2

s0, due to the convergence s Vu, we can conclude. |

€
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In the next result, by L in O C R? we will denote the operator s.t.:

D(L) = {f|fio € D(An)}

and L(f) = An(fjo) extended to 0 out of O, where Ay is the Laplace operator with Neumann null
boundary conditions in O.

THEOREM 7.4.4. If O C R? is open, bounded and convex, if Js = (I— GAN)_I, then

/0 VIs()|(x) dx < / IV](x) dx

forally e Wh (0, 2 N1L*0,LY).

PROOF. We consider y € (W1 NL?)(0,.£7); by the convexity of O, and arguing as at the
beginning of the proof of Lemma 7.4.3, we can suppose that y is L(0), and we can extend it out

of O.

Hence, we can suppose y € W' (RY, 24 N L>(RY, £4).

Clearly there exists a decreasing sequence {0, },cn of open bounded convex sets in R? with
C> boundary st. O C (", 0, and .£%(0,\0) — 0. We consider Lo Laplace operator in O
(on L*(R?, #)) and Lo, Laplace operator in O, (on L?(R?, #%)), for 6 > 0 we consider J :=
(I-oL)7!, Jon = I— oL,)”! operators in L?>. We can apply Lemma 5.2.2, and we have a
Mosco convergence of a, (form associated to Lo,) to a (form associated to L). It is clear that for
all f € L*(R?,.£4), we have

u:=Js(y)jo =Js(y0)
and
Up = ér,n()’)\On =Jon(y)
where J; := (I — 0Ap) ' in L*(0) and Js, := (I — 6A0,) ! in L*(0,, £?).

It is clear that 6J , is associated to a,,6 where a, is the Dirichlet form in W'2(0,), while
oJ/; is associated to a,0 where a is the Dirichlet form in WO1 2(0p, 2£%); hence, by using Theorem
5.1.3 and Mosco convergence of a, to a we have that J; ,(y) — J5(y) in L*(R?, #%); so, each
subsequence converges up to a subsequence, hence J% ,(y) — J5(y) in L*(R?, £4), and Unjo — U
in L2(0,.2%)

By Lemma 7.4.3 we have that

”VHJér,n(y\On)HL‘(O,,,H) < ||VH)’||L1(0,,,H)

and hence
(7.4.2) limsup||VeJg ,(vio) i 0,.m) < 1Vaylleio.m)-

(because .Z%(0,\0) — 0).
We have that u,p — u in L*(0,.£?). Now, the functional [, |V - |(x) dx is lower semicontin-
uous with respect to L?>convergence, so

/ Vauly dy < / Vel dy.
(0] (0]

7.4.2. Case Neumann boundary conditions, Gaussian measure.
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7.4.2.1. Finite dimensional case. In the case of the Gaussian measure (in finite dimension),
and zero Neumann boundary conditions, the argument is similar to that in the above section: for
O C RY convex we define L as the Ornstein-Uhlenbeck operator with zero Neumann boundary
conditions on O, and J5 = (I — oL)~".

We recall that, for p € [1,+o0], we say f € WP(0) (in the sense that f € W'P(0,v?)) if
fe Wl})’f(O,)/l) and f € LP(0), Vf € LP(0,¥*,R?). Clearly in this setting W' C W!! because

the measure ¥ is finite.

LEMMA 7.4.5. If O C RY is convex with C* boundary, then
[ 1viatar' < [ sl ay

forally € (W' nL2)(0).

PROOF. Because of the lower semicontinuity of the functional |, o |V | dy with respect to L?
and of the density of C*(0) in (W11 NL?)(0) (by Corollary 3.2.24), it isn’t restrictive to suppose
thaty € C*.

We recall the definitions of ¢ in Section 7.2.1.

Remark 7.4.1 implies that u € C*(0). Now, we have that Vu is orthogonal to v, because
u € D(Ly); so we can apply Lemma 7.4.2 and we have v;0 - V@, < 0 in each point of dO.

Now, we can apply Lemma 7.1.2, and we have

2
o~ OLn9e < [,

3

integrating we obtain that

[ fpoor-

2
Iy~ [ su0n0u) ds+ [ galmablage(v) - dx =

0 Pe
(where g,4(x) := (27:)*% exp @)

2
- "’daf’—/ vao-V%gddss/Wy\daf’
o Pe 90 19}

where S is the area measure of d0O; so

/Of:d}f’g/olvyldif’

2
and % — Vu pointwise, therefore we can conclude by the Fatou Lemma. g

7.4.2.2. Infinite dimensional case. From now on, we will suppose X to be a generic Banach
separable space,y a Gaussian measure on X, H the Cameron-Martin space; as above, we will
suppose that O is an open convex set in X.

In this setting, we can define the (Neumann) Ornstein-Uhlenbeck operator on the open convex
O (see [51)).
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We suppose dim(F,,) =n and F,, =< hy,...,h, > where {h;} jen in Ry(X*) is an orthonormal
base of H, and we define ,, projection from X in F,; we define 7z, = ¥* = yox, !, it is a non-
degenerate Gaussian measure on F;, and, if we identify F, with R” through the basis {Ay,...,h,},
then " is a standard Gaussian measure.

LEMMA 7.4.6. If X is a Banach separable space, if O C X is open convex cylindrical regular
set, and Js is defined in the Neumann boundary conditions, then

/ Virdo ()l dy < / Vil dy
[0} (0]

forally e WhnL?)(0).

PROOF. We suppose that O is n-cylindrical. For m € N s.t. n < m, we can consider the space
F,, with F, < F,, and we can define L]} as the (Neumann) Ornstein-Uhlenbeck operator in

B =Cy x R"" CR"

(we can consider B, ,, C F;,) with the standard Gaussian measure y"; we have that, if f € wltp (Bum)
then f oz, € W2(0), and we have

(L' f) o g, 10 = La(f 0 7R, );
where L, is the Ornstein-Uhlenbeck operator in O; we can deduce also, that, for every A > 0,
(74.3) (R(A, =Ly)f) o g, j0 = R(A, —La) (f 0 g, 0) 5
so, by Lemma 7.4.5, we have that, if J5 , := o 'R(c~!,~L,) then
/ \Vidon(W)|udy< | [Vuylu dy
0 Oy

for all y = f o ny;, for some f € WHP(B, ).
Now, giveny € (W11 NL?)(0), we consider for every m € N, m > n the measure V1 (see Part
I) and the function on B, ;,

E0)) = [ | v
T (%)

that is well defined for y"-almost every point of B, ,, C F,, (by identifying F,, with R™); we have
also E,,(y) € WP (B,,), and if
Ym = En(y) o g,

then f,, converges to f in W!»(0) (so also in Llog% L); for what we said we have
[ Wadontmln dv< [ Vsl a
0,, On

s0, also by the lower semicontinuity of |, o. |Va -|g dy with respect to Llog% L, we can conclude.
g

Using the Mosco convergence (see Subsection 5) we can prove this Proposition, which will
be extended in Theorem 7.5.11.



132 7. GRADIENT CONTRACTIVITY OF OPERATORS

THEOREM 7.4.7. If X is a Banach separable space, if O C X is open and convex, and Js is
defined using the zero Neumann boundary condition, then

/’VHJa(y)\H d?’S/WHy’H dy
0 0

forally € W NL?)(0).

PROOF. We recall, by convexity, that Wh! = w! (see Part I). By Proposition 3.2.23, if y €
wH! (O)NLP, there exists a sequence of Lipschitz functions which converges to y both in wH! (0)
and in L”(0); by recalling that J is bounded from L? to L?, that L” is embedded in Llog% L, and
Remark 7.1.1, we have that it if we prove the statement for y Lipschitz, we can conclude.

Now, each y € Lip(O) has a Lipschitz extension on X ; we will consider one of such extensions:
from now on, we will call this extension y (in particular, y € W'2(X)). u will be J5 (y|0)-

O is convex, so, C, = 7,(0) is a convex set and O/, := 1, !(C,) is a convex n-cylinder (not
regular); O), is a decreasing sequence of open sets containing O; moreover, if x € (_; O]\ O then
x € dO: by the convexity of O and the density of H, if x ¢ O there exists n € N s.t. sup{/, (x —
x0)|xo € O} > 0, and hence x ¢ O,,. So, since Y(d0) = 0 (by Proposition 4.1.5) we have that
7(0,\O) — 0; now, for each C,, there exists B, s.t. C, C By, B, is convex with C* boundary and
Y'(B,\C,) <n~! (see [51], Prop. A.4).

Let O, := &, ' (B,), we have that O C O, for every n € N and y(0,\0) — 0.

Now, if L, is the Ornstein-Uhlenbeck operator with zero Neumann boundary condition in O,,
and Jg, := (I — oL,)"! is the operator in L?(0,) defined in the Neumann boundary conditions,
by Lemma 7.4.6 we have that

/ Virdon )l dy < / Vel d:
(o Oy

let a, the Dirichlet form in W!?(0,) and a the Dirichlet form in W!?(0) (see Subsection 5),
by Lemma 5.2.4 we have that a, converges to a in the sense of Mosco; so, by Lemma 5.2.4,

Jon(y)jo converges to Jo(y) in L*(0), and so also in Llog% L; so by the lower semicontinuity of

fOn Vi - |g dyin Llog% L we have

/ ‘VHJG()’)’H d’}/g llmmf/ ’VHJO',n(yﬂH d}/S hmmf/ ’VHJO',nO’)’H d}/S
0 n—eo |4 n—e fo

gliminf/ \Vay|u dyz/\VHyIH dy.
n—oeo O, o

and we can conclude. O

REMARK 7.4.8. In the finite dimensional case, the above theorem is an extension of Lemma
7.4.5 to the case of a convex non-regular set.

7.5. BV functions and resolvent contractivity

7.5.1. BV(O) and approximating sequence. We will consider the Neumann case (section
7.4.2), with O open convex set. In this Subsection, for a function f on X, we will denote the set
f~YR™") with supp(f), and we will call it support of f.
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Now, we recall that let u € Llog% L(X) by Theorem 4.1.3, u is BV (X ) with total variation L(u)
if and only if the quantity

1
L(u) = inf{ li}rlninf/ |V st 1 dY| {1t }meny € Lip(X), up, = u} < oo,
—00 X
and if and only if
L(u) =lim |VHTIL£’Hd')/< oo,
=0 Jx

((T;)s>0 denotes the Ornstein-Uhlenbeck semigroup in X); our goal is to find a version of this
result for BV (0) NL%(0).

Our first step will be to prove that, if u € BV(0) N L?*(0) then there exists a sequence of
functions u, in W!!(0) N L?*(0) which converges to u in L*(0) s.t. [, |Vyuu|ndy converges to
the total variation of u.

We recall that a covering is locally finite if each point has a neighbourhood which intersects
only a finite number of elements of the covering.

DEFINITION 7.5.1. Given an open set O C X, given an open covering {Uy} of O, given W
linear space of real valued functions on O, we will say that a set of functions {y;} in W is a
partition of unity of class W subordinated to {Uy } if

i) y; >0foralli,and Y, y;(x) = 1,
ii) there exists a locally finite open covering {V;} of X s.t. each V; is contained in some U,
and supp(y;) CV,.

We will say that O admits partition of unity of class W, if, for all open covering {Uy} of O,
there exists a partition of unity of class W subordinated to {Uy }.

REMARK 7.5.2. O is metric and separable, so it is second countable, and then it has the
Lindelof property: i.e. each open covering has a countable subcovering. So, it is not restrictive to
suppose that {Uq}, {V;}, {y;} are countable.

We observe that the above definition implies that y; < 1 for all i.

We have this result of Albeverio, Ma and Rockner ([2], Cor. 1.4).

LEMMA 7.5.3. Let X be a separable metric space, let W be a linear space of real-valued
functions on X; moreover, let us assume that the following conditions are satisfied:
i) foreach f € W, if y € Cy° with y(0) =0 then yo f € W;
i) given two open sets A1,A; of X s.t. dist(A1,A2) > 0, there is a positive element of W that
is greater than 1 on Ay and 0 on A;.

Then, X admits partition of unity of class W.
We can deduce this Lemma.

LEMMA 7.5.4. If X is a separable metric space, if W is the set of bounded Lipschitz functions
on O, then O admits partition of unity of class W.

PROOF. We will use Lemma 7.5.3: we have to prove that W satisfies two conditions: the first
one is that, for each f € W, if y € C;;’ then yo f € W, and this is clearly satisfied because y is
Lipschitz and bounded on f(O) that is a bounded set.
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The second condition is: given two open sets Aj,A; s.t. dist(A},Ay) > 0, there is a positive
element of W that is greater than 1 on A; and O on A,. This condition is satisfied, for instance by
considering it suffices to consider the function

dist(x, Aa
flx):=— ( . ) ;
dist(x,Ay) +dist(x,A7)
it is bounded and Lipschitz with constant dist(Aj,A4,)~". O

To proceed, we will need to prove that a BV function can be approximated in a suitable way
by W2 functions.

REMARK 7.5.5. We recall that the Ornstein-Uhlenbeck operator L with zero Neumann bound-
ary conditions is the generator of the Ornstein-Uhlenbeck semigroup that is sub-Markovian (see
Subsection 3.4.3).

If O is a convex open set, we fix a point xy € O and we consider, for each r s.t. 0 < r <1, the

shrinking o, centered in xy
or(x) :=r(x—x0) +x0

and the set O, := 0,(0), that is clearly an open convex set.

We will need a technical result.

LEMMA 7.5.6. If O # X, then

dist(d0,,,00,,) > |ri —r2|d

where d := dist(xy,d0,,) Ndist(x,d O, ).

PROOF. By the geometric properties of the functions o,, it is not restrictive to suppose r; = 1,
we will use r instead to r,.

Clearly here d := dist(xo, dO,); given a plane 7 s.t. xo € 7, the sets O, N7 and ON 7 are open
in O and convex and dist(xo, 7\O,) > d. We have that
(7.5.1) dist(d0,,d0) = inf{dist(n\O, O, N )|x plane s.t. xg € 7}
(it suffices to consider, for each couple (x,y) with x € dO, and y € dO, a plane through x(,x and

¥).
So, we can consider the bidimensional case: let X = RZ, O a convex open, xo € O and O, =
0+(0), we can prove that

dist(x,d0) > (1 —r)dist(xo, #\O,) > (1 —r)d
and we conclude.

In fact, given x € d0,, clearly there exists y € dO s.t. ||[x—y| x = dist(x,dO) (by using the
local compactness of R?); for such a y, there must be only a tangent line 7 to O in y, and ¢ must be
orthogonal to y — x; then

dist(x,y) = dist(x,7);
we consider 7, = 0,(t), then ¢, is parallel to ¢ and tangent to O,, and it separates x and y, hence
dist(x,) > dist(¢,,¢) = (1 — r)dist(xo,t’) >
> (1 —r)dist(xo, \O;)
SO
dist(x,d0) > (1 —r)dist(xo, ®\O,).
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We also recall this Remark.

REMARK 7.5.7. If f € W!''?(0), if g is bounded and Lipschitz and supp(g) C O, then the
function

0 otherwise

) = {f(x)g(x) ifxeo

is in W17 (X) (it can be seen by density).
We also recall this technical calculations.

LEMMA 7.5.8. Let X be a normed vector, U be a positive measure on some space Q, f,g €
LY(Q,u,X) and c € R; then

/ 1F+glly dite< / 1l die+ / lglly dute<
Q Q Q

(7.52) < / 1Ly dit+ ] / lglly d -+l

PROOF. By the triangular inequality applied to L' (Q, i, X),

/ |—glly di < / I—F—glly di+ / 1l du

SO
- [t =gl du—c< [ 17l du— [ |-l dn—c<
(753) < [ 1Al dnsl [ Nl du-tel.
Hence, by (7.5.2), (7.5.3)
(75.4) 17 +ely direl< [ 1 du [ sl du-rel.

O

PROPOSITION 7.5.9. If O is a convex open set, if f € L>(0)NBV(0), then there exists a
sequence f, € (W' NL2)(0) s.t. f, — f in L2(0) and Jo|Vufula dy converges to the total
variation of f in O.

PROOF. Hereafter, 7, will be the Ornstein-Uhlenbeck semigroup in X.
2

We recall that, if f € L?(X), then T, f L);)> f and, by Corollary 4.2.25 (clearly it can be
t—

applied), if f € BV (X) then |VyT, f|ny weakly converges to |[Dyf| as a measure.

If O = X, we know that 7, f € W'2(X), so for t, — 0 we can use T, f to approximate f, and
we conclude.

Hereafter we suppose O # X.

Let f € L*(0)NBV(0).

We fix a point xg € O and we consider, for each r s.t. 0 < r < 1, the set O,, defined above, that
is clearly an open convex set; for each » we can define the function /,,

. dist(x,X\0)
r(x) == dist(x,X\O0) +dist(x,0,)’
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we have that I, is bounded and Lipschitz with constant dist(O,,X\0)~! which is finite by Lemma
7.5.6; for every x, 0 < I,(x) < 1, moreover o, = 1, Lyx\0 =0.
We have that fjo, can be extended to a function f, € BV (X) in this way:

x)(x) ifxeo
fr(x);:{g() (x) -
otherwise
clearly f, € BV(X) and by Lemma 4.2.12
(7.5.5) Dyfr = (Dyf)l,+ f(Vul.)y

(clearly I, € WP(0) for all p > 1 and |Vyl,|y is bounded because /, it is Lipschitz) and clearly
frio, = fio,: by (7.5.5) we have that

(7.5.6) Dyfy0, = Dyfjo,
and,
(1.5.7) |Dyf+|(90r) = [Dyf1(0).

If ri # rp then dO, NJO,, = @ by Lemma 7.5.6, and |Dyf| is a bounded measure: so
|Dyf|(d0,) =0 for all r € (0,1) but a countable subset.
(0r)

2
Let r € (0,1) s.t. |Dyf](d0,) = 0. We define f,, := T,(f,) is W'2(0), clearly f,, 2O,
t

—0t
(

1
(hence f;; L—(;;)> f because 7 is a probability measure) and by Corollary 4.2.25 we have the weak
t—

f

convergence

|VHfr,t’HY4* ‘Dyfr’
fort — 0%, hence

(7.5.8) /w!VHfr,t\H dY—>/l/fd|Dyfr|
0 t—0* 0

for all y continuous bounded functions, and, since |Dyf[(d0,) = 0 and (7.5.5) we can deduce

(7.5.9) /w\VHf,,,\de%/ v d|Dyfr|.
0, 0,

Let {r;}icy be an increasing sequence of positive numbers s.t. r; — 1 and [Dyf|(d0,,) =0
j—o0

for every i € N. We define Uy := O,,, U, := O,, and U; := 0,,\O,,_, fori € N, i > 2 (we recall that
TM C O,,,, because O is open and convex), we have that {Ui}ien is an open covering of O, that
UnNnU;=@if|i—j|>1,and U; C O,,.

By Lemma 7.5.4, there exists a partition of the unity {y; }ien (ie. y;(x) €[0,1]and }7> , y; =1
on O) s.t. each y; is Lipschitz and it has support contained in U; for every i € N.

Lete > 0.

There exists i € N s.t.

foralli>i.—1.
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By the convergence of f, ; in L? for t — 0, by (7.5.9) and the convergence in L? of 7; there
exists f¢ S.t.

(7.5.11) \/ i dy—/ fFdyi<e,
On, O,
(75.12) | frete = Fll 100, ) < 27" €(IVEYll Loy + D7
(7.5.13) [ afialudar- D0, <e
0,
"(ig—1)

and
(7.5.14) [ wilVatialn dv= [ widipyg)| <2

o 0]
for all i with 0 < i < i, (because {1,...,i¢} is finite); clearly by (7.5.14) we can deduce
(75.15) [ wlVasi il dr— [ wdip,g <2 e

0 0

for all i with 0 < i <, because y; has support in U; C Oy, , and because Dy f,0, = Dyfio, (7.5.6).
For each i € N, i > i, there exists fg ; > 0 s.t.:

(7.5.16) | frites = Fll 200,) <27,

(7.5.17) [ frises = Fll 20,y <2 IVaWill ey + 1) 71
and, by (7.5.9) and the fact that y; has support in O,,, we can also suppose that

(7.5.18) | / VIV froce, i dy / v dDyf, || < 2 e
[0 [0

this last one implies

(7.5.19) | / Vil oo it dY— / v dIDyf]| <2 e
[0} (0]

because y; has support in U; C O,,, and (7.5.6).
For each i € N, € > 0, we can choose such a f¢ ; and we define on O,

: ' i<
fe,i(X) = ll/l(x)frlevtE (X) 1 l_ l.&‘ ’
Vi () frie, (x) if Q> g
clearly fe; € W!2(X) and fe,i has support in U;.

We define on O .
Je = _Zf e
(it is well defined because y; has support in U; arllzllU,- meets only U;; and U;_1), clearly we have
(7.5.20) f£|0r(;£_|) = fr, 1elOn, -

As usually, given i € Ry(X ), we define the set O, and the function f¢ , on O,.
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We have that feo, € W*I’Z(Orl.); we recall that W'2(X) = W)?(X) (see Proposition 3.2.20).

0, .

Hence, for every h € Ry(X*) we have f. € D,"; this means that, for every i € Ry(X™), for .-
almost every y € h', the function fe,y on the section (O,,), has y;-representative ﬂ that is locally
absolutely continuous (see Definition 3.2.13); now, by considering the countable sequence r;, we

have that for y,. -almost every y € X;, the function fy on the section O, has y;-representative f,
that is locally absolutely continuous, therefore f € D,?r" for all h € Ry(X*). Vufe is defined on
every U; as Vy fe i1 + Vufei+ Vufeir1; in this sense it is well defined on O.

Now, to prove that f € W,"! (Oy,), we need only the finiteness of [, |fe| dyand of [, |V fe|u dy
We recall that in O we can also write

—+oo
=Y wf
i=1
(because {; }icn is a partition of the unity in O).
We have
~+oo ~+oo
I fe = fll 20) = Zfs,i - Z Vif || 2(0) <
i=1 i=1
e e +oo oo
< Z Vil ae — Z Vif||20) + Z Vifrite; — Z Vif || 2(0) <
i=1 i=1 i=ig+1 i=ig+1

(by (7.5.20) and recalling that y; has support in U; C O,,)

ie ie +o0
< Z Vifrip e — Z vif 2(0y,) + Z H‘I/ifr,-,ts.,- - lI/ifHL2(U,-)
i=1 i=1 i=ig+1
+oo
< Hf’ievle _fHLZ(Or(ie_l)) + ‘7;_1 Hfrhts.i _fH L2(0y,) <

(by (7.5.16) and (7.5.11))

doo
< Zs2"+e =2e¢.
i=1

We recall that
~+oo

ZVHI[/,'EO;
=1

1=

(in each point, Vg y; = 0 for all i € N but two) hence

~+oo ie
| Y VaVifrie + Y, VaVifn, ila dy <
O i=ig+1 i=1

+oo ie
<Y Vavilfuse =)+ Y VaVi(frose — lu dy <
i=1

O j=ig+1
(recalling that Vy; ha support in U;)

+oo ie
< Y | IVavilalfrs, — fldy+ Y. | IVavilalfr,. — f1dy <

i=ig+1J Ui i=1JU;
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+oo g
< Z HVH%”LN(X,H)HfriJe,i — fll 0, t Z HVH%HL”(XH)Hfrist —fllw 0,
i=ie i=1

(by (7.5.17) and (7.5.12))
oo .
<Yeri=¢
i=1
we have found then that

(7.5.21) | Z VHq/,frl,u—i—ZVHq/,frW,JH dy<e.
0 = ie+1

So we have that, in our hypotheses,

| / Vi felir dy—|Dyf|(0)] =

| | Z VHl[/lfrl7z£,+ZVHszr,S,tg+ Z llflvar,Jsz

O j=i.+1 i=ig+1

Y Uil dY—Dyf(0)] <

i=1
(by (7.5.4) in Remark 7.3.4)

| Z VHWlfr,tg,“‘ZVHszr,E ieler dy+

O j=ig+1

+| | Z V’IVHfrllg,+le’lVHfr1€ts|Hd'}/ ’D’}’f’( )‘

O j=ig+1 i=1
(by (7.5.21 and (7.5.4) again)

<e+ / \ Z ViV frise, + Z ViV frigeln dY+
o 0,

_y i=igt+]

1] / 'y wﬂfr,wzwﬂfw\m ID,f1(0)] <

_y i=igt+l

ig
(recalling that, for i > ig, WO%) = 0 and, fori <, Vioe = 0, and that Z yi=1on0,,)
e b i=1

+o0
S 8+/ | Z ll/iVHfri,ts’j + llligVHfrfE,tg|H d,}/+
0\0:< -1 i=ietl

" / Vit ol dy— Dyf1(0)] <

"(ig)—1

< Z /llszHfr,,ts,Hd?’ /‘lfzs|VHfr,e,ze|H dy+e+

i=ig

+ Dy f[(Or,y1) = 1Dy f1(0)| <

/ |VHfrig7t8|H dy— |D7f|(0r(i£)*l)

Orig) 1
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(by (7.5.19), (7.5.15), (7.5.13), and (7.5.10))

<Y ( Vi d|Dyf|+27"e) 43¢ <
i=ig Y O\Or,_,
<4t / Y yid|Dyf| =
O\Oy,. | i=ig—1

(recalling that Y32, w; =10n O\O,, )
=4e+|DyfI(O\Oy, ) <5e
by (7.5.10).
So, [Vife| € L'(0) and [, [V felu dy — IDyf|(0).
Hence, if we take f, := f1, we have that f, € W,"' (0),L2(0), f, — fin L%, and Jo|Vafula dy—
IDf1(0). " O

REMARK 7.5.10. The convergence we have found (f, — fin L? and [ |V f,|y — [ |Dyf]7)
is similar to the finite dimensional intermediate convergence (see e.g. [10], Def. 10.1.3).

We remark that in the above Theorem we use the convexity only to define the sequence of
concentric sets with mutually disjoint boundaries which cover all the domain; this can be done in
a more general setting.

7.5.2. Approximation by J;. We recall that J; can be defined as a contractive operator from
LP(0) in LP(O) for every p € [1,+00] (see Subsection 3.4.3); in general we don’t know if it is
regularizing.

We have this Theorem.

THEOREM 7.5.11. If O is open and convex and y € (BV NLP)(0) and y € LP(O) for some p >
1, if J5 is defined in LP(O) and associated to L Ornstein-Uhlenbeck operator with zero Neumann
boundary conditions, then J5(y) € BV (0) and

[Dy(Js(¥))[(O) < |Dyy|(O).

PROOF. We consider a representative of y € BV (O) finite in each point. We have that, for all
n € N, the function v, :=nAyV (—n) is LN BV (0) and |Dyv,|(0) < |Dyy|(O) for all n € N by
Lemma 4.2.10; we have also that the sequence v, converges to y in L” and so also in Llog% L(0),

hence, by (4.2.3) (and recalling that, for ¢ Lipschitz and bounded, d; ¢ € LY for every h € H, see
Subsection 3.2.1)

[Dyy|(0) = sup{} 0y9;Z<Pi dy|meN, ¢ € Lip,,(0,H), [|@lr=0m) <1} =
i=1
= SUP{JLHC}OZ Ovna}:-(l)i dﬂ m e N, (S LipO,m(07H)7 HQDHL""(O,H) < 1} <
i=1

m
<timinfsup(}. [ v3}0.d7: m & N,9 € Liny,,(O.H), [@l-iom < 1} =
i=170

= hnl1n_>1°13f|Dyvm|(0);
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therefore, |Dyy|(O) = lim, . [Dyv,|(O).
By Proposition 7.5.9 each v, can be approximated by a sequence of function y,, , € wH! (o)n
L?(0) (which converges to v, in L? and s.t. |Vgyu.,l L(OH) 7 |Dyv,|(O); we recall that
’ ? m——+oo

W' (0) = W'1(0) by the convexity of O and Corollary 3.2.24.

So, with a diagonal procedure we can find a sequence y, = y,, » in WH1(0) N L?(0) which
converges to y in L7 (for g := 2 A p, by recalling that L” is embedded in LY because 7 is finite)
and s.t. |[Vuyullpio.m) — [Dyyl(O); we recall that J5 is a bounded operator in L7, so for all

0 >0,J5(yn) -, Js(y) and hence the convergence is also in L(logL) 2; to each y, we can apply
n—oo
Theorem 7.4.7,

/ Virdo )l dy < / Vevale dv:
[0} [0}

hence, by lower semicontinuity of BV norm with respect to L(log L)% (0) convergence (Corollary
4.2.22), we have that J5(y) € BV (0O) and

IDy(Jo(»))](0) < liminf / Virda ()l dy <

n—eo

< liminf/ \Viynla dy = |Dyy|(0).
n—oo 10)
O

PROPOSITION 7.5.12. Lety € L*(0); if there exist ¢ > 0, and a sequence G, s.t. 6, — 0 and
IVudo, W)l 2x 1y < ¢ for all n, then Jo,(y) — y in Llog% L,y € BV(0) and |Dyy|(0O) < c.

PROOF. We recall that J; is a contractive operator from L? in L? for all ¢ > 0. Hence, for
a'y € L? the functions Ji, (v) are uniformly bounded in L?; we have that up to a subsequences as
On —— 0, s.t. Jo,(y) — win L? for some w € L? by the Banach-Alaoglu theorem (see Appendix);
n—co

recalling that J; = (I — oL)~!, the definition of L (which is the operator associated to the form
Jo(VH,VH)y dy) and the fact that the image of J, is in the domain of L, we have that, if ¢ € FC7,

/(Jcn(y)—y)w dy:an/L(Jan(y))w dy=
0] (0]

= —Gn/ (Vids, ), Vu @), dy
(0]

but [|[Vu Q| =(x ) is bounded, and ||ViJs, (¥)[|11(x ) < ¢ for every n, hence, for some C > 0
independent on n,

| Ve 0) =)0 41 < I90ll-xmic0n -
hence

/O(w—y)<p dy=0.

By the density of FC; in L?, we have that w = y. With this argument, we proved that J5y —
y in L? (because, for every sequence, there is a subsequence which converges). Recalling that

L’ C Llog%L for all p > 1, we have J5(y) — y in Llog% L; so we can conclude by the lower
semicontinuity (Lemma 4.2.24). O
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COROLLARY 7.5.13. If O is a convex open set, fory € LZ(O), these conditions are equivalent.
i) yis BV(0);
i) [, |Vals(y)|u dy is uniformly bounded with respect to o;
iii) [,,|VaJs(y)|a dy converges for ¢ — 0;
iv) there exists a sequence o, s.t. 6, — 0 and fo \ViJs, (y)|u dy converges for n — +-co.
In these cases,
iy [ [Vido(0) s dy=sup{ | Vsa)ln dvio >0} = 1D1(0)

c—0

2
PROOF. Itis obvious that iii)=-iv) and ii) =iv). J5, (y) ﬂ v, hence by the Corollary 4.2.22,

iv)=1) .
Let us now assume i), i.e. y € BV (0): we will prove ii), iii) and the last statement.
By Theorem 7.5.11 we know that ||/ (y)|[w1.1(o) is uniformly bounded

/0 Vado )l dy < |Dyy|(0).

Therefore, by the Proposition 7.5.12, for each sequence o, which converges to 0, we have

Jg,(¥) = y in L*(0) for o, — 0, so the convergence is also in Llog% L and we can apply Lemma
4.2.24 and

D1(0) < timint [ Vo, ()l
n—eo [
so we can conclude that [, |[VyJs(y)|n dy converges to [Dyy|(O) for ¢ — 0. O

7.5.3. Approximation by 7;. We recall that, if 7; is the Ornstein-Uhlenbeck semigroup in
L?(0) then it is analytic, and 7; f € W'2(0) for every f € L*(0). Moreover T; is contractive as an
operator in L?(O) for every p € [1,+e0) (see Subsection 3.4.3).

We consider also a result from [23], and also ([24], Thm. 17).

PROPOSITION 7.5.14. If O is a convex open set and T; is the Ornstein-Uhlenbeck semigroup
with zero Neumann boundary condition on L*(0), then

\VuTiflu < e 'T(|Vufla)
y-a. e. on O, for every f € W'2(0).
We have these consequences.

COROLLARY 7.5.15. If O is a convex open set and T, is the Ornstein-Uhlenbeck semigroup
with zero Neumann boundary condition on L*(0), if f € (W' NL?)(O) then T, f € BV,(0) and

/ VAT £(0) < e / Vit dy.
0 o0

PROOF. If f is Lipschitz and bounded, then the inequality is verified by the above proposition
and by the contractivity of 7; in L?(0O).

If f € (W' NL?)(0), then we can consider a sequence f, of Lipschitz functions which con-
verges to f in (W11 N L?)(0) (by Corollary 3.2.24): by the fact that 7; is contractive in L' (0).

im [ T(Vafla) dy = / (Vi flu) dy < / Vsl dy
o0 o0 0]

n—y—+-oo
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by Proposition 7.5.14 we have
liminf/ \VuT, foly dy < etliminf/ T(|Vy fulu) dy < et/ \Vuflu dy,

moreover T, f, converges to 7;f in L?(O) and hence in Llog% L; so by the lower semicontinuity
(Corollary 4.2.22), we have that 7; f € BV (0) and we can conclude. O

COROLLARY 7.5.16. If f € L*(O), then f € BV(0) iff
(7.5.22) liminf / \VuT, flu dy < o,
t—0 o)

and in this case
(7.5.23) lim\/ VuT flu = |Dyf|(O).
t—0 0
PROOF. If (7.5.22) is satisfied, then there exists a sequence ¢, — 0 s.t.

tim [ (9T, fl dy=c <o
we already know that 7; f converges to f in L?(0) and hence in Llog% L(0), and therefore f €
BV (0) and |Dyf](O) < c by Corollary 4.2.22.

If f € BV(0)NL*(0), by truncation there exists a sequence of bounded functions which
converges to f in BV (0) N L?(0), and hence by Proposition 7.5.9 there exists a sequence f, of

functions in (W' NL?) (0) s.t. f, o), fand [,,|Vy fulu dy converges to |Dyf|(O); therefore
we have (recalling that 7, is bounded in LP(O) for every f; and Lemma 4.2.24)

timsup [ VTl dy < timsuptimmsup [ V2T ()l dy <

t—0 t—0 n—roo

(recalling that J5 f € W!?(0) and Corollary 7.5.15)

< limsupe™ <1imsup / Vit ol dy) < limsup / Vi fulu dy = |Dyf1(0).
o o

t—0 n—oo n—oo

Hence, in this case, we have (7.5.23) and we can conclude. Il

REMARK 7.5.17. The argument of this section could be reversed: the Proposition 7.5.14 could
be used together with Proposition 7.5.9 to prove the Corollary 7.5.16, and this yields Theorem
7.5.11.






CHAPTER 8

A finite perimeter subset of a classical Wiener space

Let X, = C.([0, 1],RY) (continuous functions starting by 0), we consider the measure given by
the Brownian motion (see Section 2.6) with starting point in 0 € X, hence it is represented by a
Gaussian measure Fy. For every A € B(X,), we define % := {®w € X|w(r) € AVt € [0,1]}.

In [46] (see Thm. 5.1) it is proved that, if 4 > 2 and Q@ C R is an open set which satisfies a
uniform outer ball condition then Z¢, has finite perimeter in the sense of Gaussian measure (see
Section 7.5).

Our aim is to find a weaker condition on Q (for dimension sufficiently large) such that =, has
finite perimeter

The main points are these: in Section 8.2 we introduce p and & functions on R? s.t. p(x) €
[0,1] for every x € X, pjoc = 0 and p is locally Lipschitz in Q with a local constant given by &,
except in a set dyQ of singular points of JQ.

Hence, in Section 8.3, we impose that € satisfies certain conditions (Hypotheses 8.2.1, 8.3.20,
8.3.11, 8.3.19), we define function p on X and & on X\0,,q based on p and &, and we prove that
p € Wh1(X), and we use it to build a sequence of functions which converges to the characteristic
function of E¢,; hence we can state Theorem 8.3.21, main result of the Chapter, which asserts that,
under our conditions, Ef, has finite perimeter. This result is actually an extension of ([46], Thm.
5.1), see Example 8.3.22.

In Section 8.1 we introduce some preliminary results that are used in Section 8.3: among
others, we use stochastic concepts (see Section 1.3), the concept of Bessel process (see Subsection
1.3.5) and Proposition 1.3.18.

In Section 8.4, we prove that if Q is the complementary of a symmetric cone in dimension
greater than 6, then it satisfies our conditions and Z¢, has finite perimeter (Proposition 8.4.2).

It remains, as conjecture, the possibility to extend this result to sets which satisfy an uniform
cone condition.

8.1. Preliminary results

8.1.1. Pseudo-Hausdorff set-function.

DEFINITION 8.1.1. (pseudo-Hausdorff set function) In R?, given E C R?, we define the family
I, g of finite covering C; of E with Cy = (Bq.1,...,Ban,) Where Bg,j is a ball with radius s for

every j € {l,...,nq} and E C U’}ilBa,j; for s > 0 we define the index

(8.1.1) ns(E) :CI,-IéiI?Eni;

for m,s > 0 we define the set function

HY(E) = ngs™;

S
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we define the spherical pseudo-m-Hausdorff set function

H™(E) = liminf H"(E).
s—0

REMARK 8.1.2. i) We have H™(E) = H™(E) for every E (differently from the Haus-
dorff measure .7¢’), because if we substitute the sphere B; with B;, they cover E. If
H™(E) < oo then ™ (E) < o ( where 5™ is the Hausdorff measure).

i) If H"(E) = 0 then " (E) =0
iii) If E is a k-manifold then dimg(E) = k.

In the next Lemma we make use of the Brownian motion
Z= ('Aaja {Zf}l€[07+°°]7{“x}xeRga{yt}te[Q-&-W])

(see Section 1.3.2 for the concept of Markov process and Subsection 1.3.4 for the Brownian motion
as a Markov process).

LEMMA 8.1.3. Let E C RY, x € RY s.t. r = dist(x,E) > 0; we consider, for all s s.t. 5>s5>0,
the neighbourhood A := B(E ,s), and the random variable T, the hitting time of Ay, then
22d—4

Hx(Tg < 00) < ) H{2(E).
PROOF. By definition of {¢~2 we can define a covering C = (Bj,...,B,,) of E s.t. B; has
radius s for all i and n; satisfies (8.1.1); now, we can define, for all i, a ball BQ with the same centre
yi of B; and radius 2s; we remark that ||xo —y;|| > 5 because s < 5.
Clearly the balls B; cover Ay; we define U := 7", B!, 1y the hitting time of U (it is surely
positive because r > 2s), and, for every i € {1,...,n,} the variable T, hitting time of B..
It is also clear that 7y > 7y surely, so (T < o0) < Uy (Ty < o0); we have also that
ng
{a € Alry(a) < =} = J{a € Altg(a) <},
i=1
)
g
.ux(TU < °°) < Z.ux(TB§ < °°);
i=1
now, for some ¢p > 0 we have, recalling ||xo — y;|| > 5 and that

(2s)d72
Hi(Tp; < 00) = ——————
[0 = ill
by Lemma 1.3.21, we have, for every i,
92d—4 (d—2
Ha(Tpy < 0) < — G5 —
50 2d—4 d—2 2d—4
L n2°4 54" 2°4= _
3 ey <) < M = T )
Jj=
and we conclude. U

To control the hitting probability of a set, we will suppose that the next hypothesis is true, so
we can apply the above Lemma.
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HYPOTHESIS 8.1.4. We suppose that, for some [ > 0, for s < 1, the set E is such that
H=2(E) < cs' for some ¢ > 0 independent of s.

EXAMPLE 8.1.5. If E is a bounded subset of an affine p-dimensional subspace of R?, we can
consider, for the center of the ball of the coverings, a regular distribution in p-dimensional cells,
so ny < cs~ P with ¢ > 0 independent of s < 1; then J-Csd*2 (E) < csd—2p,

REMARK 8.1.6. If the above hypothesis is true, clearly 3¢~2(E) = 0.

COROLLARY 8.1.7. If E C R? satisfies Hypothesis 8.1.4, let xo € RY (starting point) s.t. r =
dist(x,E) > 0; we consider, for all s s.t. 5N 1> s> 0, the neighbourhood A; = B(E,s), and the

random variable T, the hitting time of As; then, there exists a constant co > 0 independent of E

and x s.t. Py(Ts < ) < %Sl-

PROOF. It is an immediate consequence of Lemma 8.1.3. O

8.1.2. A result about exit time. If it and v are measures over a X, as usual we will write
U << v to mean that 1 is absolutely continuous with respect to v.
We will need some preliminary results.

LEMMA 8.1.8. Given a bounded space interval |a,b), for ¢ := (b—a)~? s.t., if f € C'(|a,b))
and fab |f(x)| dx <1, we have

b
sup f% < 2/ |f(x)] dx (sup‘f’}—i—c) )
[a,b] a [a,b]

b
inf 1< (b—a)”! / I£] dx,

PROOF. It is clear that

and that

[su%fQ—[inbf]f2</ 0| dx=2 /|f |dx<2sup\f\/ £(x)] d
a,b a,

so (by [ [f(x)] dx < 1)

sup f> = sup f2 — 1nff +1nff <2sup}f‘/ |f(x)] dx+

[a,b] [a,b] [a,b

(/ Flx |dx> (b—a) <2/ £(0)] dx (sup\f}+0>

We suppose that X := {® € C([0,1],R?)}. We have that there exists a d-standard Brownian
motion (as a Markov process, see Section 1.3) on RY

g

Z= (‘Aafgzv {Zt}t€[0,+w]7{“x}xeRga {yt}te[0,+w])
(where (A,.7) is a measurable space). Fixed x € RY, we define the function

i : A — {measurable functions R™ — R?}
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as
ix(a) — (t = Zi(a));

we have that i, is a measurable functions, we can define

(8.1.2) Po=ilopu,,

it concentrates on X, so we can consider P, as a measure on X

F will be the Brownian filtration.

We will suppose 1 < p < oo,

Given Q C R open, x € Q, we consider the absorbing Brownian motion in Q with starting
point x (see Subsection 1.3.4):

7%= (A, 7, {Ztg}te[o,-i-OO]’{Hx}xeﬂaa{ﬁt}te[o,—&-oo]);
arguing in a way similar to that above, we define P, the probability associated to this motion on
Xo :={w € C([0,1],Q)}. Fort > 0and B € B(D),
Pl({o € Alo() € BY) = i, (Z" € B).
We recall (see Subsection 1.3.4) that there exists g > 0 kernel s.t.

uX(ZIQEB):/Bq(xvyat) dyu

so [zq(x,y,t) dy <1 for every x.
We can apply Proposition 1.3.18, so g is 2-derivable and

d ) Co llx — vII?
(8.13) Sratenn)| <t ep- 2L
and

9? _d_ Cyllx—yl?
(814) ﬁq(x,y,t) §C3t 2 zexp(_4’ty”)7

with Cy,C»,C3,Cy4 > 0 independents of x, Q. for ¢ transition function associated to Z<.
Now, we can consider 7 is the exit time associated to €, and define

Pli=1""op,
we have that P is a probability on R™.
We will argue in a way similar to [[46], Lemma 3.2].

LEMMA 8.1.9. In this setting, given Q C RY open with x € Q, let T be the exit time associ-
ated to Q, and P} the probability associated to T on R with starting point x: then the function
PZ((0,1)) is continuous and derivable in t, with non negative derivative %PXT((O,I,‘)) < it~ with
c1 > 0 independent of x,€; in particular, P,[t =t] = 0 for all t # oo. Moreover, there exists ¢ > 0

independent of x,Q s.t. SUp,c[1 1] %Pxf((O,t)) < cu/Pxf([%, 1]).

1
2
PROOF. By recalling the concepts of Markov processes, let d be the cemetery point. We
remark that for r > 0,

{a € Al(a) € (0,1)} = {a € A|ZP(a) = 9},

PXT((OJ)) :ux(ztg =d)=1 _.ux(ZtQ €Q)=
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:1_/9 (x,y,2)dy =

(by the Chapman-Kolmogorov property for kernels (1.3.4))

:1—// q(x,2,t —5)q(z,y,s) dy dz
QxQ
forall s < t.

By (8 1. 3) ’1((0,1)) is differentiable with respect to f; clearly it is increasing (by definition
of 1), so dt PE((0, t)) >0forall x € Q,0 < t; hence, by ¢ >0and (8.1.3), forallx e Q, 0 < s <t

d . B d
Gri=1 [ [ gtz Gty —s) dyd <

2
gcl// q(x,z,s)(t—s)’%’lexp —CzM dydz <
Qx0 f—s

(recalling that fRd e~ R gy <C 6~ for some C > 0, we have for some Cs independent on x, s,t)
§C5(t—s)1/q(x,z,s) dy <
Q

(by [oq(x,z,5)dy < 1)
<(C ([ —S)_l

and, if we choose s < £, we have C‘ZIIPXT((O t)) < cit~! for some ¢ > 0; we do the same thing for

we have that P’((O t)) is two derivable and

!ﬁPf ((0,1]) |—|//QQ xzsaﬂ(zy, s) dy dz| <
X

§C3// q(x,z,s)(t—s)’%’zexp —C4M dydz <
QxQ I—s

(for some Cs5 > 0 independent on x, s,1)

<Cs(i—5) / 4(x,2,5) dy < Cs(t — 52
Q

d?
dIZ s

because |, 34(x,y,t) dy < 1 for every x. Therefore, for some Cys > 0 independent on x

SUPlﬁPf((OJ))\ < Gs,
) 4t

so, if we define g(t) = dt PF((0,1)), we have |¢'(1)| < Cg on [3,1], and clearly g > 0 everywhere;
so, by Lemma 8.1.8

sup g* c 1 =2(c T 1
te[;l]g (1) <2( +C6)A g(t) dt =2( +C6)Px([2,1]),

hence
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for some ¢, independent on €2, x. 0

REMARK 8.1.10. This proof is done for a d-dimensional standard Brownian motion; if, in-
stead, we consider a d dimensional Brownian motion on the interval [0, 1], clearly the inequality
of the above propositions remain true because the exit time in this case is T = T A 1, and so if we

define P? := 7'~ ! o ., we have %Pf/((o,t)) = 4p7((0,1)) for every ¢ < I.

8.1.3. Construction of a W'! function which is piecewise Lipschitz. We consider a sepa-
rable Banach space with centered non-degenerate Gaussian measure (X;y); clearly it is Radon.
We suppose that a centered non-degenerate Gaussian measure Y is defined on R”.

DEFINITION 8.1.11. We consider an open © C X. F function on Q is locally Lipschitz if
there exists an open covering {O; };cn of Q s.t. F is Lipschitz in O; for every i € N.

F function on Q is locally H-Lipschitz if there exists an open covering {O; };cn of Q s.t. F is
H-Lipschitz in O; for every i € N.

Let F € L*(X), F locally Lipschitz on Q, hence it is also locally H-Lipschitz on Q; then,
by Corollary 3.1.15, it is almost everywhere Gateaux differentiable , and we can define almost
everywhere a local H-derivative, Vg F and the partial derivatives o, F for all h € H.

We recall that, for all measures < £', a function f € L=(R) is in W' (R) iff it is W'} (R)
and |f’| LI(R) < %% if f is Lipschitz on an interval, then it is absolutely continuous and hence W!!
on that interval; in particular, if f is locally Lipschitz on an open of R, then it is Wllm] on this open
(for the absolute continuity and the local absolute continuity see the Appendix).

We give a definition of 2-capacity of sets of (X, ), modelled on that in R¥.

DEFINITION 8.1.12. We define the 2-capacity of an open O C X as

G (0) = inf .
2(0):= it e
and for a generic set A we define C>(A) = infpcp aco C2(0) where O is the set of open subsets of
X.

It is clear that, if Y(A) > 0 then C>(0O) > 0.

PROPOSITION 8.1.13. We suppose that there exists a sequence of {l;}ieny C [0,+), a se-
quence of mutually disjoint Borel subsets {X;}icn, s.t. Y(X\U~,X;) = 0 and a closed © s.t.
C2(®) = 0; we will suppose

Y Fy(Xx) =:1<eo
i=0

(hence ¥7° o 1iY(X;) < oo due to the finiteness of y).

Let F € L*(X), such that F is locally Lipschitz out of ©, and F is l;-Lipschitz in X; for every
i € N: then F € WH(X).

Moreover, F' admits almost everywhere H-derivative, and, for alimost each point, if x € X; then
|VHF(X)|H § ll'.

PROOF. Under the hypothesis, F' is almost everywhere Gateaux differentiable and admits
almost everywhere H-gradient, moreover, for almost each point, if x € X; then |VyF (x)|g <;
by Theorem 3.1.11 and Corollary 3.1.15.
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F is locally Lipschitz out of @, so it is locally absolutely continuous along lines.
VyF € L'(X,H) because

/X IVaF |y dy< ¥ LX) < e
=1

Now, for n € N we consider an O, C X open with® C O,,and a g, € lez(X) s.t.

1gnllwrixy < lgnllwrzpy — 0
(|-l < [|lly1> due to the fact that 7y is a probability), 0 < g, < 1,80, = 1.
We consider F,, := F(1 —g,), we prove it is in W!!(X) with weak gradient
VHF,, = VHF(I _gn) —FVHgn;

by Lemma 3.1.13 it suffices to prove that, for every i € H, for y,.-a.e. y € h' the function (Fu)y
has a representative locally absolutely continuous, and that

F,(x+1th) — F,(x)

t

(8.1.5) —(VuF,h)y

converges to 0 in measure Y for t — 0.

For every y € h', we have that g, = 0 on (0,), D Oy, and (g,), has a representative locally
absolutely continuous, while the function F, is locally absolutely continuous on R\®, for ¥, -a.e.
y € ht, so (F,) y has a representative locally absolutely continuous in such y.

We have that, for every h € H, by F locally Lipschitz out of ®, that

F(x+th)—F(x)
t

- <VHF, h>H
tends to 0 y-a.e, and that for

gn(x_'_tht) _g'l(x) . <VHgnah>H

we have the convergence in measure to 0; so we have the convergence (8.1.5) in measure 7.

So F, € WhHI(X) for every n € N by Lemma 3.1.13.

whl(x
Now, we prove that F;, —§ )

F; we have (by using the hypothesis on the sequence {/;};cn)

IViF gl < / Vi |gn dy <
X

(by the Holder inequality)

1
2

<IVaFlull200) 8nll2x) = (ZIEY(Xi) d?’) &nllz200) =
i=1

=1 Hgn”L2(x) 30

and therefore

IF = Eullwra oy = 1F8nllwrs ey <

n—yoo

< Fl= 11 = gl + IE = 1 Ve&nllr + 111 = 8) VE N 1 (x 11y = 05

hence, F is the limit of the sequence {Fg,},cn in W', hence it is in W1 O
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REMARK 8.1.14. We recall that for every h € H, ||h||y < ||h||y. If we want to prove that
|VuF (x)||y <liina.e. x € X;, it is sufficient to prove that for all 1 € H, for ¢ sufficiently small

F(x+th)—F(x)
t

<li[llx;

then

F(x+th)—F(x
I ZF] < iy < bl <

|OpF | = liminf
t—0

So, for such a x we can write Vg F € H, and ||VgF (x)|| < ;.

REMARK 8.1.15. We will apply the Proposition 8.1.13 for Brownian motion in R?, that is
a particular case of Gaussian measure; if the starting point is 0, it will be a centered Gaussian
measure; however, the property of the Brownian motion doesn’t change if we change the starting
point, so we can apply this result for all the starting points.

8.2. Some technical lemmas about open sets

Let Q C R? be an open set. For every r > 0 we define B, as the ball with radius > 0 centered
in 0, and B(x, ) as the ball centered in x € R? and with radius r > 0.

Very heuristically, our main goal in this subsection is to define: a set dyQ of points of JQ
which do not admits a tangent ball out of Q; a function 0 on Q which, for every x € Q, express the
radius of a ball out of Q which is, in a certain sense, 'near’ to x; and a function p; which, in some
sense, substitutes the distance from Q, s.t. it is ¢~ !-Lipschitz in regions of Q in which § > ¢ (so
p1 is not regular near the points of d;Q).

Hereafter we will suppose that the next hypothesis is true.

HYPOTHESIS 8.2.1. There exists R, > 0 s.t. for every x € dQ there exists a y € QF s.t.
dist(y,x) <R and dist(y, Q) > 1.

We define g(x) := dist(x, Q¢).We consider for some 0 < r < 1 the open set
(8.2.1) Q:={xeQlg(x)>r} CQ;
so in particular

Q= {x e Qlg(x) > 1}.
We set, for each y € R?,
8'(y) :=dist(y, Q) A 1;

then &’ is continuous (and 1-Lipschitz) and positive, and 6'(y) — 0 if y converges to a point of
0Q; we define, forx € Q and y € Q°,

g(x,y) = == ) —_)é|/|(;)5/(y) ;

we have that g is continuous in y and in x, it is non negative (by ||x—y|| > 6’(y)), and it converges
to 40 if x is fixed and |y| goes to +eo; moreover, if y, — yo € dQ\{x}, then g(x,y,) — +oo.

So, if x € Q, fixed x the function g(x, -) has a minimum.

Let d;,Q the sets of elements of dQ s.t. g(x,-) does not have a minimum.

For every x € Q\0;,Q, g(x,-) has a minimum.

If x € Q, then ||x — y|| > dist(y, Q) for every y € Q, so g(x,y) > 0.
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DEFINITION 8.2.2. We define on Q\ d;;Q

e =y =8)
gl(x) ‘_ylenfff 6/(})) _;Ielgzg(xay)v

and, on R4

I1Ag(x) ifx € Q\duQ
oy {118 020
0 otherwise

we have that, for all x € Q\0d,Q, there is a nonempty compact set M(x) of minimal points of
g(x,-); we define on Q\dysQ a function & (x) := max,ep(y) 6'(y) > 0; we define on RY

S(x) = {51 (x) ifxeQ\(QUdsQ)

1 otherwise ’
clearly 6(x) <1 everywhere.

In general, 0 < p(x) < 1, for x € Q we have that g, (x) > 0, p(x) > 0, and for x € Q" we have
that p(x) =0, g1(x) <O0.

We observe that g(x) < gi(x) for every x € Q: in fact, for all y € Q°, we have g(x,y) >
lx =yl = 8'(y) > q(x); therefore, g(x) < p(x) on RY\(Q U Q).

8 is defined everywhere, but its behaviour is interesting only in Q\ (Q; U d;sQ).

REMARK 8.2.3. If x € dQ, and if there exists a ball By C Q° tangent in x of radius r < 1
and center y then clearly x ¢ d,Q and p(x) = 0 (recalling that g(x) is always non negative, so
g1(x) = g(x,y) =0 and 0 is a minimum) and 8 (x) > r. If z € Q and the above mentioned x is the
nearest point of dQ to z then d(z) > r .

In fact, if by contradiction §(z) < r, then there exists y € Q€ s.t. 8'(y) = 8(z) < r and s.t.
g(z,y) < g(z,w) where w is the center of By (hence 6'(w) = r); this yields, if v is an intersection
of the segment between z and y with dQ, then

o=yl =8'0) < (= wll = 8'(w) 583

<l|lz—w|—r
and
lz=v| < llz=yl[=8"() < llz—wl| —r=[lz—x],

(the last equality is true because x € dB; and r is the radius of Bj); but x is the nearest point to z
of dQ, contradiction.

For x € Q| we have
1

> >1
g1(x) > 50 >
SO
(8.2.2) P =1;
for x € Q\Q, by the Hypothesis 8.2.1 there exists y s.t. §(y) > n and |[x—y|| <R+ 1, s0
R+1
(8.2.3) g1(x) <cpi=——.

n
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For x € Q\Q; and y € M(x) we have that ||x — y|| — 8"(y) > g(x) (because &’(y) = dist(y,Q2)),
therefore, by definition of p and o

= > q(x) > @;
P =) 2§05 > 53
hence, for every x € Q\Q, by (8.2.3),
(8.2.4) S(x) > :1(();)) > ¢ q(x),

clearly (8.2.4) is true for every x € Q, because §jg, = 1.

LEMMA 8.2.4. Ifx, — xin Q\ (Q1 U Q), with §(x,) — &, > 0 for some 8y, then §(x) = &1,
0 is upper semicontinuous in Q\ (Q; U ds Q).
PROOF. Let x, — x, with J(x,) — &; > 0; it is not restrictive to suppose that there exists
¢ >0s.t. 8(x,) >c>0;lety, asequence s.t. y, € M(x,) and &'(y,) = 6(x,), and let z € M(x,);
we have that g(x,,z) — g(x,z), hence there exists C > 0 s.t. for every n € N g(x,,z) < C and so
8(Xn,yn) < C (because y, € M(x,)), s0
[l =yl < 8'(y)C+6'(y) <C+1.

So, by x,, — x, there exists R > 0 s.t. dist(y,,x) <R, hence {y, } ,en is contained in the compact
B(x,R) and up to a subsequence we have that y, converges to some y, and, by the continuity of &',
81 :=&8'(y) > ¢ > 0and y € Q°; therefore by the continuity of g on R x Q¢

g(x,y) = lim g(x,y,) = lim g(xn,yn),

and we can infer y € M(x) and &(x) = &'(y), because if by contradiction there exists y’ s.t.
g(x,y") < g(x,y), then by continuity of g for some n we have that g(x,,y") < g(x,,y,) and y, ¢
M (x,) (contradiction).

If §(x,,) — 0, the upper semicontinuity in Q\ (U, Q) is obvious, because & is non negative,
so we have concluded. U

REMARK 8.2.5. Now we consider a set O C Q\&SSQ and a ¢ > 0 s.t. for all x € O, we have
3(x) > c; then, p is ¢~ !-Lipschitz in O.
In fact, for x; € O, x, € O with g;(x2) = p(x2) < p(x1) (hence, we can suppose x; ¢ Q; by
(8.2.2)), we can fix y, € M(x), so 8’ (y2) = 8(x2) > ¢ and we have
o =yl =6 2=yl = 8" (02)
x1)—px) <gi1(x))—g1(x) < inf — <
p(x1) —p(x2) < g1(x1) —g1(x2) o 10 5 ()
_ _ 6/ _ _ 5/
< Hxl yZIH ()’2) _ HXZ y2[” (yz) < cfl ||X1 _x2|| )
6'(y2) 0'(y2)

REMARK 8.2.6. For r < 1, by (8.2.4), (x) > clrifxe Q,\Q; and by (8.2.2) p(x) = 1 if
x€Q;s0pis cr‘l—Lipschitz in Q, for Remark 8.2.5.

We have also Q = (J;,_; Q. ; therefore, p is locally Lipschitz, and hence continuous, on Q; the
set

(8.2.5) Q ={xeQlpx)>r}

is open for all r > 0. Besides, p = 0 on Q¢, and so p is continuous everywhere except on the
boundary of Q.
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DEFINITION 8.2.7. We consider
0,Q = {x € 9Q\0;,Q|g1(x) > 0}.
We define
25Q := {x € Q|3{x, }»en sequence in Q s.t x, — x,8(x,) — 0} UaTQum
by (8.2.4) d,Q C dQ. It is obvious that d;Q is closed. We will call d;Q singular part of dQ ,

REMARK 8.2.8. Let A C R? be an open and s > 0 s.t. for every x € QN A there exists a ball
B C Q° s,t, x € B; then SN 0, = & by Remark 8.2.3.

REMARK 8.2.9. § is continuous in Q\ (d;QUQ;) by Lemma 8.2.4; g; = 0 in dQ\ 9, Q.
DEFINITION 8.2.10. For each a > 0, if we define the compact set
[, := {x € B, |dist(x,0,Q) > a}

(where B, is the ball centered in the origin with radius a).

0 is continuous on the compact (Fa HQ) \Q, so 0 has a minimum ¢ > 0 on (Fa ﬂQ) \Q
(because d,Q NI, = @), so & has minimum ¢ on ', (because § = 1 on Q¢ and Q).

REMARK 8.2.11. We recall that, if a function is not Lipschitz in a compact, then there is at
least a point in which is not locally Lipschitz.

LEMMA 8.2.12. Leta > 0; p is Lipschitz in T,.. p is locally Lipschitz out of d;Q.

PROOF. Let ¢ the minimum of § on I',.

We want to prove the first point. By Remark 8.2.11, we have only to verify that p is locally
Lipschitz in every point.

In Q°, we have p = 0, hence the local Lipschitzianity is verified.

If x € [, NQ, then by Remark 8.2.5, p is ¢~ !-locally Lipschitz in x.

If x e T,NJQ, then x ¢ JyQ, so in a convex neighbourhood B of x we have

Piroa = 05

by Remark 8.2.5, p restricted to I', N Q is ¢~ '-Lipschitz, and restricted to Q¢ is 0, so it is ¢!
Lipschitz in B: given x € QN B and y € Q° N B, the segment between them intersects BN JQ in a
point z and p(z) = p(y) =0, so

P —p0)l _ o) —p@)| _
byl = ed S

Hence we concluded the first part.
The second part is an obvious consequence (because R?\9,Q = J,,-(T). O

8.3. Finite perimeter of subsets of C([0, 1],RY) through approximations of characteristic
functions.

As in Section 8.2, Q@ C R? is an open set which satisfies Hypothesis 8.2.1. We recall the
concepts of p, 8,9;Q,T, of Section 8.2.
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8.3.1. Geometric properties of functions on C([0, 1], R¢). In this subsection, X = C([0, 1], R?).
For each A C R? we define
Oy ={weX|3Fre|0,1]st o(t)cA}
and
Ea={oeX|o(t) cAVre]0,1]}.
If A is open in R?, then T4, 0, are open in X; if A is closed in RY, then Z4, 0, are closed in X.

In particular, ®, g is closed.

DEFINITION 8.3.1. We define p; : X — R as

_ inf; ot ifoé¢ 0,
p(w) = tE[O,l]p( ( )) : ¢ 9,Q )
0 if we @33_9

LEMMA 8.3.2. p is locally Lipschitz out of ®y ¢, in particular it is continuous on X\, ¢,
and Borel measurable on X.

PROOF. For all ® € X\0, o, we define the function

7(@) :=inf{z € [0, 1]|[p(0(2)) = p(@)},

and (@) := o(t(w)): it is clear that if ® ¢ ©, ;, then p(w) = p(X(w)), because p is continuous
on ®([0,1]) and w is continuous.

For a > 0, the function p is Lipschitz in the open set I, (interior of I',) by Lemma 8.2.12,
with a constant that we denote as 5!

We consider Y, := Z: C X, we have that it is an open, and let @, @, € Y., if p(@;) > p(a@»)

a

then (recalling that p(@;) < p(w,(¢)) for all )
|p(@1) —p(@)] plar)  plon(r(ar))) _

lor—lly — llor—aly  [lo-fy ~
_Plon(r(@)) _plen(t(@)) _ & o —ollegor _ o
T o — oy oy =y — o1 — an[x ¢
We have that if @ ¢ ©, g, then dist(@([0,1]),0,Q) = r' > 0, and @ € Y, for some a > 0; so
X\0,0 = U2 Y1, hence p is locally Lipschitz in X\®; o, and we can conclude. U

Our first issue is to give sufficient conditions to can use the Proposition 8.1.13 for the func-
tional p.

We can define for all ® ¢ @, g the set
(8.3.1) A(w) :={x e w([0,1]),p(x) = p(w)}.

For o ¢ ©, o we get ®([0,1]) C I, for some a > 0, hence, by Lemma 8.2.12, p is continuous
on ([0, 1]); this, together with the continuity of @, yields that A(®) is compact; J is continuous
onI,\Q by Remark 8.2.9 (and itis 1 on Q; and Rd\fl, and less than 1 in the other points), hence
it admits a minimum on A(®).

For what we said, we can give the following definition.



8.3. FINITE PERIMETER OF SUBSETS OF C, ([0, 1],R¢Y) THROUGH APPROXIMATIONS 157

DEFINITION 8.3.3. We define on X\ 0, o
5_ ®):= min 6(x
1( ) xeAl(w) ()

and

5(0) = S1(w) if(DE'EQ\G(;SQ
1 otherwise

(by recalling the definition of Q; in the Section 8.2); clearly 0 < 5((0) <.

LEMMA 8.3.4. § is lower semicontinuous in E5\0y.q; in particular, it is a Borel measurable
function.

PROOF. We have 5‘91 =1,s0 S|59| = 1, hence in Eq, there is nothing to prove because it is

open and & < 1 everywhere.

Because of the lower semicontinuity, it suffices to prove that § is lower continuous on E5\(0y,0U
Eq,); so, let @, be a sequence which uniformly converges to @ in Eq\(@5qUEq,). Let [ :=
liminf, ... (®,), we want to prove that [ > §(®).

If [ =1, there is nothing to prove.

Let [ < 1. For every n € N there exists x, € A(®,) s.t. §(x,) = 8(®,), so §(x,) — [; there
exists a sequence #, s.t. x, = @,(t,), up to a subsequence f, — t, let x := (t), we get x, — x;
by the continuity of p out of ®, o and the continuity of p out of d,Q, we have x € A(®); clearly
x ¢ Q) because [ < 1, §jo, = 1 and Q; is open; hence, by the continuity of § in Q\(d,QUQ;)
(Remark 8.2.9), we have 8(x) =1, s0 [ > §(m).

Hence we proved the lower semicontinuity in g\ 0, o; by this and by £5\0,. o € B(X), we
get the B (X )-measurability (see Lemma 1.2.8). O

DEFINITION 8.3.5. Forall n € N, n > 1 we define the set

3
|
—

Y, = {w €X\0,0|6(0) < ! }7

X, = {w eX\@aA,Q]% <é(w) < ! },

“n—1
by Lemma 8.3.4, X,, and Y, are Borel sets.

REMARK 8.3.6. The sets X, are mutually disjoint; ;_, X, = X\ 0 q.

LEMMA 8.3.7. In this setting, for every n € N, we have that, in each point of X,,, the Lipschitz
constant of p (as function on X), is less than n.

PROOF. We use the Remark 8.1.14: given @ € X,, and @; € X we want to find a [y s.t. if [ < [y

then
p(@+lw)—p(o)| <nt|hly;

it suffices to prove that there exists ¢, > 0 s.t. for a generic @; with ||@; ||y < ¢ we get [p(w +
) —p(o)] < nlloy.

Hereafter, B(A(®), ) is the set of points of R at distance from A(®) less than r.

Case 1): w € X,,NEq,; hence the local n-Lipschitzianity it is clear because P, = 1 and Eq,
is open;
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Case2) w € X, NEq\Eq,: Eq is open , therefore there exists ¢; > 0 s.t. for a generic w; with
o]y <c1 we get 0+ o) € Eq.

o ¢ 0, by definition of X, so dist(A(w),d;2) > 0, moreover dist(w([0,1]),Q) > 0 (be-
cause ® € Eq and Q is open); by @ € X, we get §(®(x)) > 1 for all x € A(w); we know that & is
continuous in Q\9Q; (Remark 8.2.9), and § = 1 in Q° so there exists an r > 0 s.t. §(x) > % for
all x € B(A(w),r); hence, p is n-Lipschitz in B(A(®),r) N Q by Remark 8.2.5, therefore
(8.3.2) p is n-Lipschitz in B(A(®), r)
because p = 0 on Q°.

By recalling (8.2.5), the compact @([0, 1])\B(A, 5) is contained into the open QE (@) by the
definition of A(®), hence dist(@([0, 1])\B(A(®), g),Rd\Qg(w)) =7 >0.

Now we consider a @; € X s.t. |loi|y < 5 A7 Acy (recalling that [|-||y is the L™ norm):
let# € [0,1] s.t. o(t) € B(A(w), %), we have (w+ @) (t) € B(A(w),r) NQ (by ||@1]|y < 5 and
W+ w; € Eg), hence by (8.3.2)

o ((@+ @) (1)) —p ((@0)(0))] < nllanlly
S0
(8.3.3) p((o+a)(t) = p(a(t)) —nlloily = p(w) —nllo]y-
Moreover, by considering 7 s.t. ®(t) € A(w) C B(A(®), 5), we have also
(8.3.4) p(@)+nllanly =p(o0)) +nfolx > p((@+ o)) > p(@+ o).
Letr € [0,1] s.t. () ¢ B(A, %) then (0 + o) (1) € Q35 ) (by o]y <), ie.

p((0+w)(1) > p(w),
so by this and (8.3.3), we have for every ¢ € [0, 1],

(83.5) p(0+m1)(1) > p(w)—nllory
hence
(8.3.6) p(o+ar)>p(w)—n|oy.

Now, by (8.3.4) and (8.3.6), and by the generality of @w; we have that p is Lipschitz in a
neighbourhood of @ with constant n.

Case 3) w € X, NOqc NE5\Eq,: s0, A(w) intersects IQ\d,Q and p(w) = 0 (recalling that
p = 0 on dQ\J;Q); we can repeat the arguments of Case 2), but we do not define ¢; and we
impose |||y < 5 A (instead of |||y < 5AF Acy): if @+ @) ¢ Eg then
(8.3.7) plo+aw)=p(w)=0;
otherwise, let 7 € [0,1] s.t. (t) € B(A(w),5), we have (0+ ) (to) € B(A(@),r) N Q (by
o]y < 5 and @ + @ € Eg), hence in both cases
o ((@+ @) (1) — p(@)(1)| < nflon]lx,

and we can deduce (8.3.4) and (8.3.3); (8.3.5) in this case is obvious because p(®) = 0, and we
can conclude in the same way of Case 2)
Case 4) w € Og. then obviously p is 0 in a neighbourhood, and there is nothing to prove. [
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8.3.2. Stochastic properties of functions on C([0,1],RY). Also in this subsection, we write
X = C([0,1],R9).
We recall that the Brownian motion can be described by a Markov process

Z= (‘Aﬂgv {Zt}ze[0,+w],{ﬂx}xeRga{gt}te[0,+oo])
(see Subsection 1.3.4).
We define i : A — X, a+ (t — Z;(a)) and, for every x € RY,
P = i o Uy

is a probability on X which describes the d-dimensional Brownian motion with starting point in x.
In the rest of this subsection we suppose the following Hypotheses on Q are true.

HYPOTHESIS 8.3.8. For every x ¢ d,Q, we assume P (0, ) = 0.

REMARK 8.3.9. By Hypothesis 8.3.8, ([0, 1]Nd;Q = & P,-almost surely, hence in particular
p(w(+)) is continuous P -almost surely by Lemma 8.2.12.

We recall H¢ defined in Definition 8.1.1.

HYPOTHESIS 8.3.10. For some [ > 0, for s < 1, it is verified J{f_z(8s§2) < ¢s'! for some ¢ > 0
independent of s (i.e. the set d;Q satisfies the Hypothesis 8.1.4).

HYPOTHESIS 8.3.11. There exists ¢, > 0 s.t. for all » > 0 with » < 1 we have d(x) > cr for
all x ¢ B(9,Q,r).

REMARK 8.3.12. Let
U:=B(d,Q,c;'(n—1)71
the set of points with distance from d;Q less than ¢, ! (n—1)~'.If the Hypothesis 8.3.11 is verified,
then, ¥, C @ and, if @ € Y, then Al0)NU # 2.
In fact, if @ € ¥,,, then §(®) < -1+, so there exists x € A(®) s.t. §(x) <

hypothesis x € U.

n]j and so by the

EXAMPLE 8.3.13. By Remark 8.2.3, if Q satisfies an uniform outer ball condition for some
radius r > 0, then d;Q = & (by Remark 8.2.8) and &(x) > r everywhere in Q (see Remark 8.2.3),
in particular it satisfies Hypotheses 8.3.10 and 8.3.11.

COROLLARY 8.3.14. Let x ¢ 9;Q, P, be the probability associated to the Brownian motion
with starting point x. If Hypotheses 8.3.8, 8.3.10 and 8.3.11 are true, then there exists C > 0 and
ni € N (dependent on Q, x) s.t. for alln € N, n > n| we have

Pe(Xi1) < Pe(Yoi1) < Po(Op5g) < Cln—1)7",
for the | in Hypothesis 8.3.10.
PROOF. We have that, by Hypothesis 8.3.11,

o S0 € Oy © Onaastyy

we suppose that n > 1, n > dist(x, d,Q) ~!; clearly
Px(@)B(aSQ,ﬁ)) < Ile(’l?% < o)
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where 7, is the hitting time of B(d,Q, %) so by Hypothesis 8.3.10 we can apply Corollary 8.1.7

PX(®B(8YQ%)) S CIQ-C?—Z(&S.Q),
for some C > 0 (depending on €, x); hence we conclude. O

To prove the next result, we will argue as in the proof of [[46], Proposition 3.1] with ||x — y|| —
0'(y) (for y € M(x)) instead of ¢(x) and &(x) < 1 instead of &.

LEMMA 8.3.15. 3C; >0 s.t. forallu € (0,1], x € Q,

P{@ € X\@y0l0 < inf p(a(1))} < Cigi(x)u*,
te

)

PROOF. Clearly, by the continuity of p out of d;Q,

(@€ X\0aal0 < inf p(0(1))
tel0,u

is open.
Givenx € Q, lety € M(x). We recall that p(z) = 0 for z € Q°\J,Q, and that the ball B(y, 8’ (y))
is in Q°, so
(X\050l0 < inf p(0()} € {0 € Xlo([0.0) "2 =}
te|0,u

C{oweX|o(0,u)NB(y,8' () =2} ={oe X\tei[rg)fu} loo(®) =yl = 6'(y)}

(clearly they are all Borel subsets of X); now, we can apply Lemma 1.3.20 (u corresponds to P,),

a is substituted by &’(y), r is substituted by ||x — y|| — &’(y): for the ¢ > 0 of that Lemma we have
(by recalling 8'(y) < 1,u<1)

P{X\@pl0 < inf p(o(1))} <
te|O,u

x—y||—9& 1 1 1
<o (STt (a1 =800 ) < Cratit = Cuan
for some C; := c+ 1 independent of x, u. U
Hereafter, let
Ar = ®Er U EQ
where E, := {x € Q\0O, o|p1(x) < r} (itis closed in Q\0, o); clearly A, is a Borel set.

LEMMA 8.3.16. Let U’ be a closed set s.t.

U' Co,QU{x e RN\9Qp(x) < r},

T’ be the hitting time associated to U’', Z be the Markov process introduced above, associated

to a Brownian motion. There exists C > 0 s.t. for every x € Q, for [ .-almost every a € A, for
k,l,ce(0,1)

IN

o (k <1-7 <[, 0< inf p(ZT'+I)’g:T’(a)> (a)
t€(0,cl]
-4

< My (1= 7(a)-Ce2r (1-7'(a))
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PROOF. 7’ is the hitting time associated to U, hence it corresponds to the exit time of the open
U¢ (and x € U¢). We will use i : A — X; hereafter we will write also @, to mean i(a) witha € A
(w, will be a part of the sample path of a).

We recall that p o @, is continuous for ,-almost every a € A by Remark 8.3.9 hence, for the
definition of 7/, we have that p(®(7')) < r < 1 P-almost surely, so p(0(7)) = gi1(@(7')) < r;
therefore, by Lemma 8.3.15

'u’wa(f/(a)) <|:0 < tel[l(}fc"l}p(Zt)]) N

(8.3.8) = Po,(wap{@ € X[0< inf p(@(r)} <Cie2r 2,
te[0,cl]

for u-almost every a € A; hence, arguing as in [46], we have the following calculation (E, will be
the mean value of a function with respect to the measure given by (,): for u,-almost every a € A

Hx <k <1-7 <[, 0< inf p(Z‘L'/+t)|~rfr’(a)> (a) =

t€[0,cl]

(because Y (1—17'(+)) is Ty (q) measurable)

=g (1= @) (0< inf p(Zen) ey ) (6) =

t€(0,cl]

(by the strong Markov property, and the fact that the set defined by 0 < inf,c(g 4 p(-) is Borel)

<t (1= 20) et (|02 inf p(@)] ) <

(we know that p(w,(7')) < r for p,-almost every a € A, so by (8.3.8) there exists C s.t.)
< ey (1—17'(a)) Cc il <

D=

<My (1=7(a@)-Ce2r(1-7)"
and we can conclude. O

LEMMA 8.3.17. Let xo € Q. In our hypothesis there exists C > 0, s.t., for all 0 < r < 1,
(8.3.9) Py, ({w €X[0< i[r(l)f]p(a)(t)) < r}) <Cr
tel0,1
for the | in Hypothesis 8.3.10.

PROOF. p(xp) > 0, so it is not restrictive to suppose r < p(xp).
We will use the Markov process

Z=(A,7, {Zt}te[0,+w}a{ux}xeRgv{%}te[Oﬁoo});

we recall that Z is a strong Markov process, and it has the strong Markov property (see Definition
1.3.12); we want to prove for some C > 0

o (i7' () < C,

where i: A — X, a— (t — Zi(a)).
We recall the set A(®w) = {x € ®([0,1]),p(x) = p(®)}.
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We define the closed set
U:=d,QU{x e RN\, Q|p(x) <r}
(it is closed because p is continuous out of d;Q); we have xo ¢ U.

We define 7’ the hitting time associated to U (it corresponds to the exit time of the open U¢)
for the Brownian motion with starting point xo € U*; it is clear

i"'(0y) = T'(a) <1}

and

i (X1 NA,) Ci 1 (OyNEq) = {a € Al (a) < 1,0 < l[nfl]p(Zz( a))} C
tel0

- O {fac AR F<1-7(a) <271 0< 1f1f]p(Z,( a))}U{ac Alt'(a) =1} C

U2 <1-7(a) <27 0< inf p(Zoiy(a)U(7 (@) =1);
t€[0,274]

we have that /.Lx({r = 1}) = 0 due to Lemma 8.1.9; by Lemma 8.3.16 there exists C; > 0 s.t. for
every x € Q, k € N and for y,-almost every a € A,

T <2k< 1-7 <27 0< inf p( ff+,>|fﬂ/(a>> (a) =
t€[0,274]

1
1-7 T2
<t agi-r@)-ar (S5 )

In the following [E, will be the expected value respect to the probability pi, and E,(-,F) will
be the conditional expected value with respect to the probability L.

Defining Pxfol =1"1lo L, measure on [0, 40| (it is the law of 7’ under P;), arguing as in [46],
Prop. 3.3 (but by using the Lemma 8.1.9 instead of [46], Lem. 3.2), we have that

o ([o< it pto) <r]) = i '(Eunza)) <

t€[0,1]

QF<i-7 <2 o< inf p(Zey))U(r'=1)) =

< X
S b 1e[0,27K]

TCs

(recalling that u, ({7’ = 1}) = 0, and by the properties of the conditional probability in Proposition
1.3.9 and of conditional expectation in Proposition 1.3.7)

oo

By //%(U(z_k <1-7(@) <27 0< inf p(Zyy,)|Fr)

k=1 16[02 }
<E, y X 2_k<1—7/<2_k+1,0< inf Z :|3:/> =
<Bq Lo (| < _inf p(ze)| 1
=Y E, [uxo<[2—’<<1—r’gz—k+1,0< inf p( H,)] |3"T,)]§
k=1 t€[0,274]

-7\ 2
<) Ey 1{2k<1—r'<2k+1}'C1V< > ) =
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1
1—-7\"2
:Exo ll{fzgl}'cll"< 3 > ] =

(we can apply Lemma 8.1.9, because 7’ is the exit time from an open, so PXTO/ ((0,1)) is differen-
tiable)

1

1 —_—=
d 1—1¢ 2
=C —Pr((0,8)) | —— dt
o [ e (45)

1

1
-4\ 2 24
< 2 _ T
_C1r<< 5 ) /OdtPXO((O,t))dt+

1
d . Lrp—g\ 72
z - <
+ sup L) [ ( . ) dt)_
16[2,1] 2

(by Lemma 8.1.9, sup, 1 %PXZ((OJ)) < ¢/PF([0,1]) for some ¢ > 0 independent on n,r)

<Cir <P;’ ((02)) +cy/PF ([0, 1])) < rCy

for some C, > 0 and because U C B(d;€Q, (can)~1); clearly C; is independent on r, and we con-
cluded. O

PROPOSITION 8.3.18. Let xo € Q. In our hypothesis there exists C > 0, ng € N s.t., for all
O<r<l,neN, n>ng

(8.3.10) P, <Xn+1 N{w e X|0< i[r(l)f]p(a)(t)) < r}) <Cr(n— 1)%’
tef0,1
for the | in Hypothesis 8.3.10.
PROOF. We have

X, N{weX|0< i[%f]]p(a)(t)) <r}=X,NA,
te|0,

because X, N1®, o = J, hence it is a Borel set.
We will use the Markov process

Z= (-Aagy{zt}te[o,-&-oo];{,ux}xe]Rga{%}te[O,+Oo]);
we recall that Z is a strong Markov process, and it has the strong Markov property (see Definition
1.3.12); we want to prove
L (T (X, NAL)) < Crn?

where i: A — X, a— (t — Zi(a)).

We recall the set A(w) = {x € ®([0,1]),p(x) =p(®)}.

We suppose ng > dist(xg, d;Q) .

Let ¢, the constant in Hypothesis 8.3.11; for n € N, n > ny we define the closed set

U= 0,QU (B(asg, (can) )N {x € RN\G,Q|p(x) < r})

(it is closed because p is continuous out of d;Q); we have xo ¢ U.
By Remark 8.3.12, if ® € X,,+1 C Y,,+1, then there exists

x € A(®)NB(Q, (can) 1)
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so p(x) = p(®) < r, therefore

Xn1NA, COpNEQ.
We define 7’ the hitting time associated to U (it corresponds to the exit time of the open U¢) for
the Brownian motion with starting point xo € U¢; it is clear

i*1(®U) ={acA|”(a) <1};

and

(X1 NA) €7 (O NZa) = a € A7 (@) S1.0< inf p(Z(@)) €
tel0

C O{a cAR*<1-7@ <27 0< inf]p(Z,(a))}U{a cAlt'(a)=1} C
k=1

tel0,1

U2 <1-7(a) <27 0< inf p(Zoi(a)U( (@) =1);
= 1€[0,27K]

we have that ux({'v = 1}) = 0 due to Lemma 8.1.9; by Lemma 8.3.16 there exists C; > 0 s.t. for
every x € Q, k € N and for p,-almost every a € A,

27 F<1—7 <271 0<  inf )| Feria =
(2t <17 < it p(Zes )T ) (@)

=

1—17 -
< 11(2*k,27k+1](1 — T’(a)) -Cir (;’(a)) )

In the following E, will be the expected value respect to the probability w,, and E,(-,F) will
be the conditional expected value with respect to the probability L.

Defining Pxfol := 7~! o, measure on [0, +oo] (it is the law of 7’ under P;), arguing as in [46],
Prop. 3.3 (but by using the Lemma 8.1.9 instead of [46], Lem. 3.2), we have that

P, (Xn+1ﬁ[0< inf p(w ())grD =P, (i (OyNEq)) <

r€[0,1]

oo

<o (J@F<1-7 <2 0< inf p(Zey))U(T = 1)) =
=1 t€[0,274]

(recalling that u, ({7’ = 1}) = 0, and by the properties of the conditional probability in Proposition
1.3.9 and of conditional expectation in Proposition 1.3.7)

W] F<1-7(a) <271 0<  inf )| F e
0 /*LokL:Jl )7 te[i)z"}p( r+t)‘ T)

XO

Z“xo [2 <1-7 Sz_k—Ha 0< inf p( ‘c/+t):| |§r’)] =
1€[0,274]

Z X [,uxo ([ <2 g« inf P(Zyis) ] ysy)] <

t€[0,274]

s 1—7\ 2
< Y By [Lpciovea b 'C1V< > ) =
k=1
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1
1—-7\"2
:Exo ll{fzgl}'cll"< 3 > ] =

(we can apply Lemma 8.1.9, because 7’ is the exit time from an open, so PXTO/ ((0,1)) is differen-
tiable)

1

Ya 1—1\ 2
- 4 pr L
ar [ S () T a
1
1=\ g
scﬂ<< 22> | Srtony ar

1 1
, 1—1\ 2
s Srnion) [ (1) Car) <
1 dr 1 2
te(3,1] 2

(by Lemma 8.1.9, SUp;1 ) %Pfol((o,t)) < ¢/P7([0,1]) for some ¢ > 0 independent on n,r)

<Clr<Pf <<0;>> +c¢m) < rC\/PF((0,1]) < rCs(n 1)

for some C»,C3 > 0 and n > n; (for some n;) by Corollary 8.3.14 and because U C B(d;Q, (con)~1);
clearly Cs is independent on r, n > ng. Let ngy := dist(xo, 8SQ)_1 +n1, and C := C3 we have that
the inequality (8.3.10) is verified for every n > ny.

So we concluded. O

8.3.3. Finite perimeter of Zq. In the above subsections we considered X = C([0, 1],R%), for
every x on X it is defined the probability P, corresponding to the Brownian motion with starting
point in x.

We have that, in particular, Fy is a probability on X, that describes the d-dimensional Brownian
motion with starting point in 0 (see Section 2.6), and Py concentrates on X, := C,([0,1],R?) let H
be the Cameron-Martin space. We recall that (X, F) is a Wiener space.

For a set A C R? we define ®* and Z* in X, in a way similar to ® and E:

O, :={weX,|Ftel0,1]st. o) €A} =0 ,NX,
and
Ei={oeX o) cAVt€[0,1]} =ZiNX,.

We can restrict p on X,.
We consider an open set Q C X which satisfies Hypotheses 8.2.1, 8.3.8, 8.3.10, 8.3.11.
We make stronger assumptions about Hypothesis 8.3.10 and Hypothesis 8.3.8.

HYPOTHESIS 8.3.19. For s < 1, the set H¢~2(9,Q) < cs° for some ¢ > 0 independent of s (in
other words, Hypothesis 8.3.10 is true for some [ > 5).

HYPOTHESIS 8.3.20. In addition to Hypothesis 8.3.8 (P(®,q) = 0 for every x ¢ d,Q) we
suppose that ®, o has null 2-capacity with respect to the measure 7, i.e. CZ(QT%Q) = 0 (see Defi-
nition 8.1.12). “

THEOREM 8.3.21. Let 0 € Q, we assume Hypotheses 8.2.1, 8.3.20, 8.3.11, 8.3.19, then 136 is
BV (with respect to the measure F).
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PROOF. The first step is to prove that p € W!!(X,), by using Proposition 8.1.13.
We recall that
Py(®)0) =R (050) =0
(by Hypothesis 8.3.20)

We Remark that p € W'!(X,): in X, N X, we have that p has Lipschitz constant less or equal
to n (Lemma 8.3.7), hence |Vyp|y < n; moreover we have by Corollary 8.3.14, by n sufficiently
large

Py(X,NX,) <c(n—2)7

clearly Y75 (n — 2)%’ < +oo because / > 4. So, by the Remarks 8.3.6 and recalling C;(05.q) =0
by Hypothesis 8.3.20, we have all the hypotheses of the Proposition 8.1.13 with /,, = n, and we
can apply it (recalling the Remark 8.1.15).
We define, for j € N,
Py (@) = jp(@) A1
clearly, p;) is jn-Lipschitz a.e. in X,, for every n € N; by Corollary 8.3.14 there exists n; € N s.t.
for some ¢ > 0 we have (by [ > 4)

Z JznzPo Z c ] n— 2
n=nj n=nj
0 P(j) € Wl1(X,) arguing as to prove p € W!!(X,) above (by using Proposition 8.1.13).

We recall that Py(0,.q) = 0 (because it has null capacity by Hypothesis 8.3.20).

By Lemma 8.3.2, p is locally Lipschitz out of @, so we can locally define Vyp almost
everywhere. Let @ € X™\(Ep U @) ), we have p(®) =0 (by Plac\a,e =0 ), so it is a point
of minimum, hence, on each line, if the restriction of p is derivable then it has O derivative; so
Vup = 0 almost everywhere on X, \(£q U@ ).

LetUj:={xeQ|p > %} On the set Ey;, Vup(;) = 0 almost everywhere in a similar way
(p(j) = 1, so each it is a point of maximum).

For j — o0, U, is an increasing sequence s.t. U;’:‘x’l U; = Q; in particular, for ng in Proposition
8.3.18, we have Ry (U2, X, \U;) — 0.

Now, by the chain rule (see Remark 3.2.8) and Remark 8.3.6

= VuP)ll 1 e 1. = Hfll(o<p<;)!VHﬁ!H

- ZJ'HH(O<p<l.)VHI3} ~ =
n=2 /

L (Xnﬁ:.Q,(H,/J))

1ViP oo oy Lz ()

(by Lemma 8.3.7, Proposition 8.3.18)

<]ZnP0{a)€Xn,0< inf p(o(r)) <j~ <]Zn—|-C] Z n—2)"

— t€[0,1] | J =y
because é > 2.

So 1z, is BV due to p; L 1z, and Theorem 4.1.3: in fact, by recalling that Py(©,¢q) = 0,
that we have p( ;) (@) = 1 if infycp ) p(0(7)) > j~' and pj(®) =0in

X\(EaU®,0) C{we X|tgféfl]P(w(f)) =0},
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and 0 < p( )< 1, we have that

1) = Tzall1 = /X (1za = P() dPo < Po{® € X\O;0[0 < ok p (@) < i<

(by Remark 8.3.6)

<Y P{weX,1|0< inf p(o()<j'}<

=1 1€(0,1]
- 1,5 \: 1 - 1,5 1 J—ee
<Y Ci'nT =) Ccj In+ ) Cj'n? =i —=0
n=1 n=2 n=1
for some ¢, co > 0, due to Lemma 8.3.17, Proposition 8.3.18 and because [ > 4. O

In other words, Zg is a set with finite perimeter.

EXAMPLE 8.3.22. If Q satisfies the outer ball condition, then clearly it satisfies Hypothesis
8.2.1, moreover d;Q = & , and Q satisfies also Hypotheses 8.3.20, 8.3.11, 8.3.19 (see Example
8.3.13); so, we can apply Theorem 8.3.21.

8.4. Example: complement of a cone

X = {w € C.([0,1],R?)}, Py as in the above Section (as we said it is a Wiener space).
For every r > 0, we define on R

1 ift € ]0,7]
(1) =< 2= ift € [r2r];
0 ift > 2r

it is 7~ !-Lipschitz.
For a point xo € R? we can consider the function f: X — R

o — L (dist(@([0,1]),x0));

We have that f is 7~ !-Lipschitz, hence it is W12 (X), Vil (x\05, U0y
2r r

r~1; now by Lemma 1.3.21, for every y ¢ ®p, we have (by recalling that, for y € R4, the proba-
bility P, correspond to u probability associated to the Markov process with starting point y)

=0and (|Vulr|u)e, <

P(©p,) < (2r) 2 x
S0, ‘fr‘WyLz(X) 2% 0 because d > 3.
We proved
(8.4.1) Py({x}) =0 forevery y #x, C2(®y)=0
where C; is the 2-capacity in (X, Fp).

REMARK 8.4.1. Analogously it can be proved that, if A is an affine subspace with dimension
d > 3, then Cz(@{x}) =0.
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Now, let K be an open circular cone with vertex in the origin O, i.e. there exists a ball B C R¢
s.t. x € K if and only if x is on a half-line starting from O and intersecting B; there exists a, a
half-line starting from O and passing through the center of B; b will be the line which completes a
and it is called axis of the cone. In our setting, K will be up, and b\a down.

Clearly K is convex, and it is symmetric with respect to b.

Let Q := K¢; for such a Q we apply the concepts of Subsection 8.2.

We have that dQ is the union of half-line starting from O and tangent to B, and each of that
forms with a an angle of amplitude c. It is clear, that, for each point of z € dQ except O, there is
an outer ball tangent in z, and the radius of this ball is locally uniform, as in Remark 8.2.8, so for
what we said in that Remark d,Q C {O}.

Now, with a translation, we suppose that O is in the origin (only to simplify some calculation
about the geometry Q).

We will suppose that the axes of the first coordinate in R¢, in the positive part, corresponds to
a. So, each x € R? can be written as x = (x1,X) where ¥ € R4-1 For each y € Q° (so y; > 0), we
have that 6’(y) = y; sin ; hereafter, we write r := sin ¢, so &'(y) = ry;.

If x; > 0, then the point z, of dQ nearest to x is on a line /, passing through x and orthogonal
to the surface of dQ, so I, intersect a in y, with an angle 7 /2 + o with respect to its unbounded
part; we have that there is a ball in Q¢ with center in y, tangent to z, and with radius ||z,|| tan o
(because O, z, and y, form a rectangular triangle); so by Remark 8.2.3,

8(x) > 1Al|z] tana,
by x; > 0 we have also that
lzx|l > ||X]| tan o > ||x|| sin o tan e,

is nearer to O than x (because [, is orthogonal to the line through O and z, and by the Pythagorean
theorem), so

(8.4.2) 6(x) > 1A ||x| tancr.
Let x € Qs.t. §(x) <1 and x; <O0: clearly x ¢ Q;; by Remark 8.2.6, we have that &(x) >

1 Acgq(x) (where g(x) is the distance from the boundary) for some ¢ > 0 independent on x. We
have that t. g(x) > sin adist |x||, hence for some ¢; > 0

(8.4.3) O(x) > 1Acax||-
We are ready to prove the above result.

PROPOSITION 8.4.2. Let d > 7 the dimension, for Q = K¢ (where K is the above described
cone), and 0 € Q, we have Ef, € BV (X).

PROOF. We prove that the hypotheses of Theorem 8.3.21 are verified, so we can apply it.

It is clear that Hypothesis 8.2.1 is satisfied. Obviously d;Q = {0}, it is a point and by (8.4.1)
C2(05,0) = 0, so Hypothesis 8.1.4 is verified. Clearly Hypothesis 8.3.10 is verified for / = 5, in
fact for some ¢ > 0

HI2(9,Q) = cs°

Eventually, Hypothesis 8.3.11 is verified by putting together (8.4.2),(8.4.3). O
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REMARK 8.4.3. For d > 7, we can define K a spheric cone in R4, and then K; = K x R™ C
R*™ (a cone that is translation invariant in some directions). It can be verified that what we
said can be extended to Kj, because a d + m-dimensional Brownian motion can be decomposed
in a sum of a d-dimensional Brownian motion and a m-dimensional Brownian motion, mutually
independent.






APPENDIX A

Fundamental definitions and notions

Basic notions about Lipschitzianity, Holderianity, graphs, lower semicontinuity. If X is a met-
ric space, a real function f is said locally Lipschitz if, for every x € X, there is a ball B centered in
x s.t. fip is Lipschitz.

A Lipschitz function with Lipschitz constant ¢ > 0 is said c-Lipschitz.

A function f: X — R is said -Holder if there exists a constant ¢ s.t.

f(x) = f()lx < clx—y|*

Given a function f: X — Y, we define the sets {G =k} := {x € X|G(x) =k}, {G € A} :=
{x € X|G(x) € A}.
Given a function f : X — R, the graph of f is the set

{y € X xR|y = (x,f(x)) for some x € X }.
Given a function f : X — R, the epigraph of f is the set
{y € X xR]y = (x,)') where x € X and y' < f(x)}.

Let X be a topological space. We say that a function f : X — R is lower semicontinuous if,

for every x, — x we have
f(x) < liminf £(x,),
or equivalently, if £~!((r,+o]) is an open set for every r € R.

Some geometric notions. A topological space X is said separable if there exists a countable
basis of open set, i.e. a countable collections A of open set s.t. all the open sets of X can be
obtained by a countable union of open sets of A.

A set A C R satisfies an uniform outer ball condition if there exists r > 0 s.t., for every x € dA,
there exists an y s.t. B,(y) NA = & but x € dB,(y).

If X is a normed space, a set A C X is said convex if: if x1,...,x, € A, if A1,..., A4, > 0 s.t.

" A =1, then

m
Aix; € A.
i—1

1

If X is a Banach space and A is a convex subset, for every point x € dA there exists at least an
hyperplane 7 s.t. x € 7 and one of the two halfspaces does not intersect A (a hyperplane with this
property is said tangent hyperplane).

The intersection of convex sets is always convex; in particular, the intersection of a convex
and a line is an interval on the line.

A convex set in R?, has always Lipschitz boundary.

171
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Let Q be a subset of a metric space X, [ > 0, f be a [-Lipschitz function on Q; then f admits
the McShane extension which is Lipschitz on X

J(x) :=sup{f(y) =[x —yllly € O}
(clearly ﬁg = f); if f is Lipschitz and bounded, we can consider a truncated McShane extension
which has the same Lipschitz constant an the same sup-norm of f.

Vector spaces, Banach spaces, complexifications. If E is a real vector space, we consider a
complexification E¢ in this way: as set Ec = E X E, the sum is defined in the obvious way, and if
z € C then

2(x1,x2) 1= (Raxy — Szxz, Szxy + Raxp)
we will write x| 4 ix; to mean (x,y), and Ec is a complex vector space.

In a real (or complex) vector space X a norm is a nonnegative function |||y on X s.t.: ||rx||y =
7| ||x||x forevery r €e R (r € C) and x € X;||x||y =0iff x =0 (forx € X); ||x+y|[x < |[x|lx +¥llx
for every x,y € X; a space provided with a norm is said a normed space; it is a a metric space with
dist(x,y) = ||x — y||x (and it has a topology).

A normed space it is complete if {x, },en is a sequence of points of x s.t., for every € > 0 there
exists mg s.t. |x, — x|y < € for every n > mg, then x, converges to some x € X for n — oo,

A complete normed real vector space X is said a (real) Banach space.

A complete normed complex vector space X is said a complex Banach space

A (real or complex) Hilbert space H is a (real or complex) Banach space provided with an
inner product (-,-) s.t. ||x||; = /{x,x)y; we denote ||-||,; also as |-|,. Every separable Hilbert
space H admits a orthonormal basis {/;};cn, s.t. each h € H can be written in only one way as

+o0
h= Zf:"‘l’ a;h; where a; € R for every i € N and Z ]ai|2 < 4o (we will call a real Hilbert space
i

simply Hilbert space).

Given a real Banach space X we define its complexification X¢ in this way: Xc is the com-
plexification of H as a vector space, and the norm is defined as

l(x1,x2)|lg ;== sup |jx;cos6+xsin0|;
—n<0<m

Xc is a complex Banach space (see e.g. [50], Appendix).

If H is a real Hilbert space, we consider a complexification He in this way: Hc is the com-
plexification of H as a vector space, and, for x1,x2 x3,x4 € H,

(1 +ixo, X3 +ixa) gy, = (x1,23) y +1 (02, x3) y — 1 (X1, x4) y + (02, 34)

e+ oo = o/ lalg + belg
Hc is a complex Hilbert space.

If X is a Banach space, its dual X* is the space of bounded linear functions from X to R, i.e.
the linear functions f s.t.

and

flx
il =sup 2 = s () < oo
vex Xl xex il =1

X* is a Banach space with norm ||-||y..
If H is a Hilbert space, then its dual H* is canonically isometric to H by the function

H—H" h (h,-)y.
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If H is a Hilbert space, and F is dense in H, then for & € H, we have that & = 0 iff (h,g)H =0
forevery g € F.

If X is a Banach space, the weak™* topology on X*is the weakest topology s.t. for each x € X
the function X* — R, f+ f(x) is continuous; the weak topology on X is the littlest topology s.t.
for each f € X* the weakest X — R, x — f(x) is continuous; this topology always exists; if X is a
Hilbert space, the weak topology and the weak™ topology coincide (recalling that H is the dual of
itself).

If x, converges to x the sense of weak™ topology (we also say in weak®™ sense), we write
x, —* x. If x,, converges to x the sense of weak topology (we also say in weak sense), we write
Xy — X.

In a Banach space X, a set A is said an hyperplane if there exists f € X*s.t. A= f~!(c) for
some ¢ € R; in this setting, we say that the hyperplane cuts X in two open halfspaces, f~'((c, +))
and f~1((—es,c)).

A open O C R is said set with Lipschitz boundary if the boundary is locally the graph of a
Lipschitz function.

For every p € [1,+o], and A C R? open, LF(A,.#¢) and L .
%) are defined as usual.

Let A C R?, A open. For every p € [1,+o0] we define the Sobolev space W'P(A, ) C
LP(A,£%) (for Lebesgue measure) in this way: f € LP(A, . Z?) is in W'P(A, £7) if for every
i€{l,...,d} there exists g; € LP(A, Zd) s.t., for every ¢ € C!(A),

/ us ax, - /A gi(x)p(x) dx;

we define the gradient Vf := (g1,...,84), we will write g; =: 3—)]; for every i € 1,...,d and we

define the norm ]
oz, = 1l rea ) + (/ﬁ |Pd>

for f € WIP(A,.£?). We have that, with this norm, W' (A .Zd) is a Banach space (as L”(A,.27)
with its norm); on W12(A, £4), it is defined this inner product. if fl,fz e wh2(A, 24)

< 9
<fag>W1-2(A,$d)_/4f(x) dx+/A 8){, 8x, () dx;

we have that W!2(A, %) with this product is a Hilbert space (as L*(A,.2?) is with its norm).
We define W, " (A, %) as the closure in W' (A, £7) of C}(A); if A is a convex, W, ¥ (A,.24)
is also the set of the restrictions to A of functions in W!?(R?, #) which are 0 a.e. out of A.

11; w7 (R4, #?) is the subset of of classes of measurable functions f on R, s.t., for every point

x € R?, there exists a neighbourhood A of x s.t. fi € Wl P(A, Z7).
If A has Lipschitz boundary, then each function in W1 '1(A) can be extended to a function in
W1(A); in particular, this can be done for A convex set.
Holomorphic function. If O C C and X is a complex Banach space, we say that a function
f: O — X is holomorphic in a point zy € O if there exists f’ € X s.t.,
PRGSO}

) Z—20

(A, .£%) (for Lebesgue measure
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f 1s holomorphic in O if it is holomorphic in every point of O.
Convolutions. If ¢,n are functions on R?, the convolution is the function given by the integral
(if it is always well-defined)

@*n(x)z/w(y)n(x—y) dy.

If for k € NU {400} and € CK(RY) then ¢ xn € CK(RY); if {N,}uen C CH(RY,.27) is a
sequence s.t. 1, > 0, [1,|.1gey = 1 for every n € N and supp(7,) converges to {0} as a set,
then: if @ € LP(RY) then ¢ % 1,, converges to @ in LP(R?, £%); if ¢ € WIP(R?, £?) then ¢ x 1,
converges to @ in WP (R4, £4).

So, a function in W' (R?, #?), by convolution, can be approximated by a sequence of Lips-
chitz functions.

If @ € L'(R?) and € LP(R?) then @ 1 € LP(RY)) and |@ * 1| ray < |@| 11 (Ra) 1|10 (R0)-

Absolute continuity. We recall some facts and definitions about absolute continuity.

DEFINITION. Let U an open subset of R. A real function f on U is said absolutely con-
tinuous if, for every € > 0 there exists d; > 0 s.t., for every finite sequence of disjoint interval
A ={[a1,bi],...,[an,bu]} s.t. [a;,b;] C U forevery i and Y7, (b; — a;) < O, the condition

Zl F(b) — flar)| <

is satisfied.
A real function f on U is said locally absolutely continuous if, for every compact interval
[a,b] C R, fj4p) is absolutely continuous.

We recall the well-known facts that a absolutely continuous function in U is in W' (U) (with
the Lebesgue measure), and that an element f of W' (U) always admits an absolutely continuous
version f.

Riesz-Thorin interpolation theorem. For the above result and more, see e.g. [S8], Sub. 1.3.18.

PROPOSITION. [Riesz-Thorin theorem] Let (X,[L) be a measure space, p,q € [1,+), A
be a contractive operator in LP(X, 1) and A, be a contractive operator in LY(X, L), and A and
Ay coincide on LP (X, ) NLY(X, ), then they can be extended in a unique way to a contractive
operator in L' (X, ) for every r € (p,q).

Banach-Alaoglu theorem.

THEOREM. [Banach-Alaoglu theorem] If X is a Banach space, then each bounded set X* is
compact in the weak” topology; in particular, if X is a Hilbert space, then each bounded set is
compact in the weak topology.

Hélderianity of the solution of elliptic problems. We recall that, for a > 0, C*% is the set of
functions with k derivatives which are all a.-Holder.

DEFINITION. We will say that a set has boundary C*%-regular if the boundary is locally a
graph of a function CH¢,

REMARK A.0.1. If O C RY is a set with boundary C>“*-regular for some o > 0, if L is an
operator in O strictly elliptic on bounded sets (see e.g. [43]) with Dirichlet boundary conditions,
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if y€ C*(0) and u := (I — oL)~! and L is an operator which is strictly elliptic on bounded sets,
we have that u € C?(0). Let’s recall the proof.

In fact, for each R’ > R > 0, we can consider two balls Bg, Bg centered in a point, and a smooth
function 0 that is 1 on Bg and 0 out of By, and a bounded smooth set C s.t CNBg = O N Byr;
hence, v := Ou will be the classical solution of a Dirichlet problem

oclv—v=g inC
v=0 on dC

for some g that is in L2(C) (because u € W'2(0)) and L is strictly elliptic on C; therefore, v €
W22(0ONBg) (e.g. by [43], Thm. 9.15), hence u € W>?(O N Bg) (and this for all R > 0). Hence,

by the Morrey theorem (see e.g. [21], Cor. 9.15) we have WP C L7 with % = % — %, hence

u and its first derivatives are in L ~%)"' in each bounded set. By induction, we can find that
v € W2P(O N Bg) for a creasing sequence of p > 1 and R > 0 (at each step, by knowing that
u € W»P(ONBg) we can find that g € LY(C) and hence u € W>4(0 N Bg) for g = (% -
in particular, u € W>?(0O N Bg) for some p s.t. % — ﬁ < 0; hence, u € C"%(0 N Bg) for some
a > 0, always by the Morrey theorem. Hence, g € C%%(O N Bg), so Bu is a classical solution and

Bu € C*(ONBg) (by [43], Th. 6.14), and this for all R > 0. So, u € C*(0).
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