Electrolyte-gated organic field-effect transistors (EGOFETs) exploit the transduction of interfacial phenomena, such as biorecognition or redox processes, into detectable changes of electrical response. Here, it is shown that, beyond sensing applications, EGOFETs may act effectively as memory devices, through the functionalization of the gate electrode with a self-assembly monolayer comprising a switching molecule undergoing a large and persistent change of dipole moment, upon application of a small (0.6 V) programming potential. This first example of a switchable EGOFET device with memory retention is based on a tetrathiafulvalene derivative self-assembled on gold and an aqueous buffer as electrolyte in a microfluidic assembly. Changes of the self-assembled monolayer redox state lead to variations of the gate electrochemical potential and, as a consequence, the EGOFET's threshold voltage undergoes reversible shifts larger than 100 mV. The distinctive electrical readout upon different redox states opens the possibility of writing and erasing information, thus making the transistor behave as a single memory cell.

EGOFET Gated by a Molecular Electronic Switch: A Single-Device Memory Cell

Greco P.;Biscarini F.
Ultimo
2019

Abstract

Electrolyte-gated organic field-effect transistors (EGOFETs) exploit the transduction of interfacial phenomena, such as biorecognition or redox processes, into detectable changes of electrical response. Here, it is shown that, beyond sensing applications, EGOFETs may act effectively as memory devices, through the functionalization of the gate electrode with a self-assembly monolayer comprising a switching molecule undergoing a large and persistent change of dipole moment, upon application of a small (0.6 V) programming potential. This first example of a switchable EGOFET device with memory retention is based on a tetrathiafulvalene derivative self-assembled on gold and an aqueous buffer as electrolyte in a microfluidic assembly. Changes of the self-assembled monolayer redox state lead to variations of the gate electrochemical potential and, as a consequence, the EGOFET's threshold voltage undergoes reversible shifts larger than 100 mV. The distinctive electrical readout upon different redox states opens the possibility of writing and erasing information, thus making the transistor behave as a single memory cell.
2019
Parkula, V.; Maglione, M. S.; Casalini, S.; Zhang, Q.; Greco, P.; Bortolotti, C. A.; Rovira, C.; Mas-Torrent, M.; Biscarini, F.
File in questo prodotto:
File Dimensione Formato  
Parkula_AdvElectrMat_2019_postprint.pdf

accesso aperto

Descrizione: versione post print
Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 644.91 kB
Formato Adobe PDF
644.91 kB Adobe PDF Visualizza/Apri
Adv Elect Materials - 2019 - Parkula - EGOFET.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2485577
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact