Purpose: Compare accuracy and precision in XYZ of stationary and dynamic tasks performed by surgeons with and without the use of a tele-operated robotic micromanipulator in a simulated vitreoretinal environment. The tasks were performed using a surgical microscope or while observing a video monitor. Method: Two experienced and two novice surgeons performed tracking and static tasks at a fixed depth with hand-held instruments on a Preceyes Surgical System R0.4. Visualization was through a standard microscope or a video display. The distances between the instrument tip and the targets (in μm) determined tracking errors in accuracy and precision. Results: Using a microscope, dynamic or static accuracy and precision in XY (planar) movements were similar among test subjects. In Z (depth) movements, experience lead to more precision in both dynamic and static tasks (dynamic 35 ± 14 versus 60 ± 37 μm; static 27 ± 8 versus 36 ± 10 μm), and more accuracy in dynamic tasks (58 ± 35 versus 109 ± 79 μm). Robotic assistance improved both precision and accuracy in Z (1–3 ± 1 μm) in both groups. Using a video screen in combination with robotic assistance improved all performance measurements and reduced any differences due to experience. Conclusions: Robotics increases precision and accuracy, with greater benefit observed in less experienced surgeons. However, human control was a limiting factor in the achieved improvement. A major limitation was visualization of the target surface, in particular in depth. To maximize the benefit of robotic assistance, visualization must be optimized.

Human/robotic interaction: vision limits performance in simulated vitreoretinal surgery

Mura M
Penultimo
;
2019

Abstract

Purpose: Compare accuracy and precision in XYZ of stationary and dynamic tasks performed by surgeons with and without the use of a tele-operated robotic micromanipulator in a simulated vitreoretinal environment. The tasks were performed using a surgical microscope or while observing a video monitor. Method: Two experienced and two novice surgeons performed tracking and static tasks at a fixed depth with hand-held instruments on a Preceyes Surgical System R0.4. Visualization was through a standard microscope or a video display. The distances between the instrument tip and the targets (in μm) determined tracking errors in accuracy and precision. Results: Using a microscope, dynamic or static accuracy and precision in XY (planar) movements were similar among test subjects. In Z (depth) movements, experience lead to more precision in both dynamic and static tasks (dynamic 35 ± 14 versus 60 ± 37 μm; static 27 ± 8 versus 36 ± 10 μm), and more accuracy in dynamic tasks (58 ± 35 versus 109 ± 79 μm). Robotic assistance improved both precision and accuracy in Z (1–3 ± 1 μm) in both groups. Using a video screen in combination with robotic assistance improved all performance measurements and reduced any differences due to experience. Conclusions: Robotics increases precision and accuracy, with greater benefit observed in less experienced surgeons. However, human control was a limiting factor in the achieved improvement. A major limitation was visualization of the target surface, in particular in depth. To maximize the benefit of robotic assistance, visualization must be optimized.
2019
de Smet, Md; de Jonge, N; Iannetta, D; Faridpooya, K; van Oosterhout, E; Naus, G; Meenink, Tcm; Mura, M; Beelen, Mj
File in questo prodotto:
File Dimensione Formato  
48-2018.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 468.73 kB
Formato Adobe PDF
468.73 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Actaprecisionsubmittedversion.pdf

accesso aperto

Descrizione: versione post-print
Tipologia: Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2481975
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact