A point p is an element of P-N of a projective space is h-identifiable, with respect to a variety X subset of P-N, if it can be written as linear combination of h elements of X in a unique way. Identifiability is implied by conditions on the contact locus in X of general linear spaces called non weak defectiveness and non tangential weak defectiveness. We give conditions ensuring non tangential weak defectiveness of an irreducible and non-degenerated projective variety X subset of P-N, and we apply these results to Segre-Veronese varieties.
On tangential weak defectiveness and identifiability of projective varieties
Casarotti, ASecondo
;Massarenti, A
Ultimo
2021
Abstract
A point p is an element of P-N of a projective space is h-identifiable, with respect to a variety X subset of P-N, if it can be written as linear combination of h elements of X in a unique way. Identifiability is implied by conditions on the contact locus in X of general linear spaces called non weak defectiveness and non tangential weak defectiveness. We give conditions ensuring non tangential weak defectiveness of an irreducible and non-degenerated projective variety X subset of P-N, and we apply these results to Segre-Veronese varieties.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Ageu_Alex_Alex_ASNS.pdf
solo gestori archivio
Descrizione: versione editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
424.53 kB
Formato
Adobe PDF
|
424.53 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2002.09915.pdf
accesso aperto
Descrizione: versione post print
Tipologia:
Post-print
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
308.14 kB
Formato
Adobe PDF
|
308.14 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.