Although left ventricular (LV) dyssynchrony assessed by ultrasound is emerging as superior to QRS duration in predicting response to cardiac resynchronization therapy (CRT), the role of conventional echocardiographic parameters of dyssynchrony is still debated. Forty-eight patients with heart failure in New York Heart Association classes III to IV, LV ejection fraction < or =35%, and QRS duration > or =120 ms were studied. LV dyssynchrony was evaluated by M-mode as septal-to-posterior wall motion delay and left lateral wall postsystolic displacement (LWPSD). Interventricular dyssynchrony was defined as the difference between the LV and right ventricular preejection periods measured by standard Doppler. Reverse remodeling was defined as an LV end-systolic volume decrease > or =15% after 6 months of CRT. Thirty-one patients (65%) were considered responders to CRT. At baseline responders differed from nonresponders by having less severe New York Heart Association class (p = 0.006), lower percentage of ischemic cause (p = 0.006), longer PR interval (p = 0.013), shorter LV diastolic filling time corrected for heart rate (p = 0.005), and presence of LWPSD (p = 0.003). At multivariate analysis, predictors of CRT response were LWPSD (odds ratio [OR] 1.045, 95% confidence interval [CI] 1.001 to 1.091; p = 0.043), LV diastolic filling time corrected for heart rate (OR 0.855, 95% CI 0.744 to 0.981, p = 0.026), and nonischemic cause (OR 0.109, 95% CI 0.018 to 0.657, p = 0.016). In conclusion, preimplantation assessment of cardiac dyssynchrony based on M-mode LWPSD may predict LV reverse remodeling after CRT, especially in patients with nonischemic cause and shorter diastolic filling time. This suggests the potential role of baseline postsystolic mechanical phenomena in determining response to CRT independently of QRS duration.

Value of baseline left lateral wall post-systolic displacement assessed by M-mode to predict reverse remodeling by cardiac resynchronization therapy

Sassone B
Writing – Original Draft Preparation
;
2007

Abstract

Although left ventricular (LV) dyssynchrony assessed by ultrasound is emerging as superior to QRS duration in predicting response to cardiac resynchronization therapy (CRT), the role of conventional echocardiographic parameters of dyssynchrony is still debated. Forty-eight patients with heart failure in New York Heart Association classes III to IV, LV ejection fraction < or =35%, and QRS duration > or =120 ms were studied. LV dyssynchrony was evaluated by M-mode as septal-to-posterior wall motion delay and left lateral wall postsystolic displacement (LWPSD). Interventricular dyssynchrony was defined as the difference between the LV and right ventricular preejection periods measured by standard Doppler. Reverse remodeling was defined as an LV end-systolic volume decrease > or =15% after 6 months of CRT. Thirty-one patients (65%) were considered responders to CRT. At baseline responders differed from nonresponders by having less severe New York Heart Association class (p = 0.006), lower percentage of ischemic cause (p = 0.006), longer PR interval (p = 0.013), shorter LV diastolic filling time corrected for heart rate (p = 0.005), and presence of LWPSD (p = 0.003). At multivariate analysis, predictors of CRT response were LWPSD (odds ratio [OR] 1.045, 95% confidence interval [CI] 1.001 to 1.091; p = 0.043), LV diastolic filling time corrected for heart rate (OR 0.855, 95% CI 0.744 to 0.981, p = 0.026), and nonischemic cause (OR 0.109, 95% CI 0.018 to 0.657, p = 0.016). In conclusion, preimplantation assessment of cardiac dyssynchrony based on M-mode LWPSD may predict LV reverse remodeling after CRT, especially in patients with nonischemic cause and shorter diastolic filling time. This suggests the potential role of baseline postsystolic mechanical phenomena in determining response to CRT independently of QRS duration.
2007
Sassone, B; Capecchi, A; Boggian, G; Gabrieli, L; Saccà, S; Vandelli, R; Petracci, E; Mele, D
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2481383
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? ND
social impact