Spectral methods, thanks to the high accuracy and the possibility to use fast algorithms, represent an effective way to approximate the Boltzmann collision operator. On the other hand, the loss of some local invariants leads to the wrong long time behavior. A way to overcome this drawback, without sacrificing spectral accuracy, has been proposed recently with the construction of equilibrium preserving spectral methods. Despite the ability to capture the steady state with arbitrary accuracy, the theoretical properties of the method have never been studied in detail. In this paper, using the perturbation argument developed by Filbet and Mouhot for the homogeneous Boltzmann equation, we prove stability, convergence and spectrally accurate long time behavior of the equilibrium preserving approach.

On the stability of equilibrium preserving spectral methods for the homogeneous {B}oltzmann equation

Pareschi Lorenzo
Primo
;
2021

Abstract

Spectral methods, thanks to the high accuracy and the possibility to use fast algorithms, represent an effective way to approximate the Boltzmann collision operator. On the other hand, the loss of some local invariants leads to the wrong long time behavior. A way to overcome this drawback, without sacrificing spectral accuracy, has been proposed recently with the construction of equilibrium preserving spectral methods. Despite the ability to capture the steady state with arbitrary accuracy, the theoretical properties of the method have never been studied in detail. In this paper, using the perturbation argument developed by Filbet and Mouhot for the homogeneous Boltzmann equation, we prove stability, convergence and spectrally accurate long time behavior of the equilibrium preserving approach.
2021
Pareschi, Lorenzo; Rey, Thomas
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0893965921000938-main.pdf

solo gestori archivio

Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 713.97 kB
Formato Adobe PDF
713.97 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2479965
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact