In recent years, funding for research on high performance solid state gas sensors has increased significantly, given the growing demand for these devices in various fields of application. Among these, chemoresistive sensors are among the most common, given their high sensitivity and small size. In this thesis work, the focus was on the advanced development of both main components of a chemoresistive gas sensor, the substrate and the sensitive material. As far as sensing materials are concerned, extensive literature is available on Metal-OXide (MOX) semiconductors, which, thanks to their excellent sensitivity, fast response and recovery times and low-cost production, are the most widely used. However, despite their great advantages, metal oxides have shown considerable limitations. It was therefore decided to investigate, in these three years of doctorate, nanostructured materials that were not metal oxides. In particular, some metal sulphides and SiC in thermo-activation have been synthesized and studied, as well as CdS and ZnO decorated with photo-activation gold nanoparticles. The results showed that metal sulphides and silicon carbide have a higher selectivity than ordinary metal oxides, in thermo-activation mode. This behaviour was particularly evident for silicon carbide, which proved to be sensitive to only SO2 among the thirteen different gases analysed, at an operating temperature of 650°C. Another interesting data obtained concerns metallic sulphides, which showed interesting sensing properties at a rather low operating temperature, 300°C, lower than the optimal operating temperature of common MOX-based gas sensors. This results in lower power consumption of the final device based on metal sulphide. In addition, both silicon carbide and metal sulphides showed good electrical and thermal stability, as well as good repeatability and stability of the detection responses to the gases analysed. The results of the chemoresistive characterizations carried out in photo-activation showed significant detection properties of cadmium sulphide and zinc oxide decorated with gold nanoparticles, which open the door to their possible use in a detection system equipped with commercial LEDs as activation sources, and therefore characterized by low energy consumption. As far as the substrate is concerned, surveys conducted over the years on common alumina platforms have highlighted some drawbacks of these devices, such as high energy consumption and high costs. Silicon micro heaters, manufactured using microfabrication technology, are a viable alternative to alumina substrate. They have been tested since the early 1990s and are defined in microhotplates jargon. In this work, silicon and quartz micro heaters have been developed starting from the targeted study of the design and production process, with the aim of obtaining stable micro heaters with low energy consumption. The characterizations of the prepared devices showed in the substrates obtained a high electrical insulation between heater and sensitive material (10-10 A of parasitic current at 650°C), high thermal stability and low energy consumption, which were around 80 mW for silicon micro heaters and 0.55 W for quartz heaters, used to bring and maintain the operating temperature of our sensitive material at 450°C. Considering that these devices can also be used in pulsed operation mode, energy consumption could be reduced to a few mW for silicon micro heaters.

Negli ultimi anni, il finanziamento della ricerca sui sensori di gas a stato solido ad alte prestazioni è aumentato in modo significativo, data la crescente domanda di questi dispositivi in diversi campi di applicazione. Tra questi, i sensori chemoresistivi sono tra i più diffusi, vista la loro elevata sensibilità e dimensioni ridotte. In questo lavoro di tesi, ci si è concentrati sullo sviluppo avanzato di entrambe le componenti principali di un sensore di gas chemoresistivo, ovvero il substrato e il materiale sensibile. Per quanto riguarda i materiali di rilevamento, un’ampia letteratura è disponibile sui semiconduttori OSsidi Metallici (OSM), i quali risultato essere i più utilizzati. Tuttavia, nonostante i loro grandi vantaggi, gli ossidi metallici hanno mostrato notevoli limiti. È stato quindi deciso di investigare, in questi tre anni di dottorato, materiali nanostrutturati che non fossero ossidi metallici. In particolar modo, sono stati sintetizzati e studiati alcuni solfuri metallici e il SiC in termo-attivazione, e il CdS e lo ZnO decorato con nanoparticelle d’oro in foto-attivazione. I risultati hanno evidenziato che i solfuri metallici e il carburo di silicio hanno una maggiore selettività rispetto ai comuni ossidi metallici, in modalità di termo-attivazione. Questo comportamento è stato particolarmente evidente per il carburo di silicio, che si è rivelato sensibile alla sola SO2 tra i tredici diversi gas analizzati, ad una temperatura di esercizio di 650°C. Un altro dato interessante ottenuto riguarda i solfuri metallici, i quali hanno mostrato interessanti proprietà di rilevamento a una temperatura di esercizio piuttosto bassa, 300°C, inferiore alla temperatura di funzionamento ottimale dei comuni sensori di gas basati sui SOM. Questo risultato si traduce in un minore consumo energetico del dispositivo finale basato su solfuro metallico. Inoltre, sia il carburo di silicio che i solfuri metallici hanno mostrato una buona stabilità elettrica e termica, oltre a una buona ripetibilità e stabilità delle risposte di rilevamento ai gas analizzati. I risultati delle caratterizzazioni chemoresistive effettuate in foto-attivazione hanno invece evidenziato significative proprietà di rilevamento del solfuro di cadmio e dell’ossido di zinco decorato con nanoparticelle d’oro, che aprono la porta ad un loro possibile utilizzo in un sistema di rilevamento dotato di LED commerciali come sorgenti di attivazione, e caratterizzato quindi da un basso consumo energetico. Per quanto riguarda il substrato, le indagini condotte negli anni sulle comuni piattaforme a base di allumina hanno evidenziato alcuni inconvenienti di questi dispositivi, come ad esempio il consumo energetico elevato e i costi elevati. I micro-riscaldatori al silicio, realizzati con la tecnologia della microlavorazione, rappresentano una valida alternativa al substrato di allumina. Essi sono stati sperimentati sin dai primi anni ‘90 e sono definiti in gergo microhotplates. In questo lavoro, micro-riscaldatori al silicio e al quarzo sono stati sviluppati a partire dallo studio mirato del processo di progettazione e produzione, con lo scopo di ottenere micro-riscaldatori stabili e a basso consumo energetico. Le caratterizzazioni dei dispositivi preparati hanno evidenziato nei substrati ottenuti un elevato isolamento elettrico tra riscaldatore e materiale sensibile (10-10 A di corrente parassita a 650°C), elevata stabilità termica e bassi consumi energetici, che si aggiravano intorno gli 80 mW per i micro-riscaldatori in silicio e 0,55 W per quelli in quarzo, utilizzati per portare e mantenere la temperatura di esercizio del nostro materiale sensibile a 450°C. Considerando che questi dispositivi possono essere anche utilizzati in modalità di funzionamento pulsato, il consumo energetico si potrebbe abbassare fino a pochi mW per i micro-riscaldatori in silicio.

Innovative chemoresistive materials for gas sensing and development of silicon and quartz MEMS devices

GAIARDO, ANDREA
2018

Abstract

In recent years, funding for research on high performance solid state gas sensors has increased significantly, given the growing demand for these devices in various fields of application. Among these, chemoresistive sensors are among the most common, given their high sensitivity and small size. In this thesis work, the focus was on the advanced development of both main components of a chemoresistive gas sensor, the substrate and the sensitive material. As far as sensing materials are concerned, extensive literature is available on Metal-OXide (MOX) semiconductors, which, thanks to their excellent sensitivity, fast response and recovery times and low-cost production, are the most widely used. However, despite their great advantages, metal oxides have shown considerable limitations. It was therefore decided to investigate, in these three years of doctorate, nanostructured materials that were not metal oxides. In particular, some metal sulphides and SiC in thermo-activation have been synthesized and studied, as well as CdS and ZnO decorated with photo-activation gold nanoparticles. The results showed that metal sulphides and silicon carbide have a higher selectivity than ordinary metal oxides, in thermo-activation mode. This behaviour was particularly evident for silicon carbide, which proved to be sensitive to only SO2 among the thirteen different gases analysed, at an operating temperature of 650°C. Another interesting data obtained concerns metallic sulphides, which showed interesting sensing properties at a rather low operating temperature, 300°C, lower than the optimal operating temperature of common MOX-based gas sensors. This results in lower power consumption of the final device based on metal sulphide. In addition, both silicon carbide and metal sulphides showed good electrical and thermal stability, as well as good repeatability and stability of the detection responses to the gases analysed. The results of the chemoresistive characterizations carried out in photo-activation showed significant detection properties of cadmium sulphide and zinc oxide decorated with gold nanoparticles, which open the door to their possible use in a detection system equipped with commercial LEDs as activation sources, and therefore characterized by low energy consumption. As far as the substrate is concerned, surveys conducted over the years on common alumina platforms have highlighted some drawbacks of these devices, such as high energy consumption and high costs. Silicon micro heaters, manufactured using microfabrication technology, are a viable alternative to alumina substrate. They have been tested since the early 1990s and are defined in microhotplates jargon. In this work, silicon and quartz micro heaters have been developed starting from the targeted study of the design and production process, with the aim of obtaining stable micro heaters with low energy consumption. The characterizations of the prepared devices showed in the substrates obtained a high electrical insulation between heater and sensitive material (10-10 A of parasitic current at 650°C), high thermal stability and low energy consumption, which were around 80 mW for silicon micro heaters and 0.55 W for quartz heaters, used to bring and maintain the operating temperature of our sensitive material at 450°C. Considering that these devices can also be used in pulsed operation mode, energy consumption could be reduced to a few mW for silicon micro heaters.
GUIDI, Vincenzo
GUIDI, Vincenzo
File in questo prodotto:
File Dimensione Formato  
tesi Andrea Gaiardo.pdf

Open Access dal 01/03/2019

Descrizione: Tesi Andrea Gaiardo
Tipologia: Tesi di dottorato
Dimensione 13.59 MB
Formato Adobe PDF
13.59 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2478796
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact