A wonderful compactification of an orbit under the action of a semi-simple and simply connected group is a smooth projective variety containing the orbit as a dense open subset, and where the added boundary divisor is simple normal crossing. We construct the wonderful compactification of the space of symmetric and symplectic matrices, and investigate its geometry. As an application, we describe the birational geometry of the Kontsevich spaces parametrizing conics in Lagrangian Grassmannians.
Complete symplectic quadrics and Kontsevich spaces of conics in Lagrangian Grassmannians
Corniani E.Co-primo
;Massarenti A.
Co-primo
2022
Abstract
A wonderful compactification of an orbit under the action of a semi-simple and simply connected group is a smooth projective variety containing the orbit as a dense open subset, and where the added boundary divisor is simple normal crossing. We construct the wonderful compactification of the space of symmetric and symplectic matrices, and investigate its geometry. As an application, we describe the birational geometry of the Kontsevich spaces parametrizing conics in Lagrangian Grassmannians.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Alex_Elsa_AIM.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
819.11 kB
Formato
Adobe PDF
|
819.11 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2012.13999.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
534.94 kB
Formato
Adobe PDF
|
534.94 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.