Silver nanoparticles (Ag-NPs) can be considered as a cost-effective alternative to antibiotics. In the presence of Fe(III)-citrate and Ag+, Klebsiella oxytoca DSM 29614 produces biogenic Ag-NPs embedded in its peculiar exopolysaccharide (EPS). K. oxytoca DSM 29614 was cultivated in a defined growth medium–containing citrate (as sole carbon source) and supplemented with Ag+ and either low or high Fe(III) concentration. As inferred from elemental analysis, transmission and scanning electron microscopy, Fourier transform infrared spectrometry and dynamic light scattering, Ag-EPS NPs were produced in both conditions and contained also Fe. The production yield of high-Fe/Ag-EPS NPs was 12 times higher than the production yield of low-Fe/Ag-EPS NPs, confirming the stimulatory effect of iron. However, relative Ag content and Ag+ ion release were higher in low-Fe/Ag-EPS NPs than in high-Fe/Ag-EPS NPs, as revealed by emission-excitation spectra by luminescent spectrometry using a novel ad hoc established phycoerythrin fluorescence–based assay. Interestingly, high and low-Fe/Ag-EPS NPs showed different and growth medium–dependent minimal inhibitory concentrations against Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 15442. In addition, low-Fe/Ag-EPS NPs exert inhibition of staphylococcal and pseudomonal biofilm formation, while high-Fe/Ag-EPS NPs inhibits staphylococcal biofilm formation only. Altogether, these results, highlighting the different capability of Ag+ release, support the idea that Fe/Ag-EPS NPs produced by K. oxytoca DSM 29614 can be considered as promising candidates in the development of specific antibacterial and anti-biofilm agents.

Biogenic iron-silver nanoparticles inhibit bacterial biofilm formation due to Ag+ release as determined by a novel phycoerythrin-based assay

Andrea Sfriso;
2020

Abstract

Silver nanoparticles (Ag-NPs) can be considered as a cost-effective alternative to antibiotics. In the presence of Fe(III)-citrate and Ag+, Klebsiella oxytoca DSM 29614 produces biogenic Ag-NPs embedded in its peculiar exopolysaccharide (EPS). K. oxytoca DSM 29614 was cultivated in a defined growth medium–containing citrate (as sole carbon source) and supplemented with Ag+ and either low or high Fe(III) concentration. As inferred from elemental analysis, transmission and scanning electron microscopy, Fourier transform infrared spectrometry and dynamic light scattering, Ag-EPS NPs were produced in both conditions and contained also Fe. The production yield of high-Fe/Ag-EPS NPs was 12 times higher than the production yield of low-Fe/Ag-EPS NPs, confirming the stimulatory effect of iron. However, relative Ag content and Ag+ ion release were higher in low-Fe/Ag-EPS NPs than in high-Fe/Ag-EPS NPs, as revealed by emission-excitation spectra by luminescent spectrometry using a novel ad hoc established phycoerythrin fluorescence–based assay. Interestingly, high and low-Fe/Ag-EPS NPs showed different and growth medium–dependent minimal inhibitory concentrations against Staphylococcus aureus ATCC 29213 and Pseudomonas aeruginosa ATCC 15442. In addition, low-Fe/Ag-EPS NPs exert inhibition of staphylococcal and pseudomonal biofilm formation, while high-Fe/Ag-EPS NPs inhibits staphylococcal biofilm formation only. Altogether, these results, highlighting the different capability of Ag+ release, support the idea that Fe/Ag-EPS NPs produced by K. oxytoca DSM 29614 can be considered as promising candidates in the development of specific antibacterial and anti-biofilm agents.
2020
Grazia Cusimano, Maria; Ardizzone, Francesco; Nasillo, Giorgio; Gallo, Michele; Sfriso, Andrea; Martino-Chillura, Delia; Schillaci, Domenico; Baldi, F...espandi
File in questo prodotto:
File Dimensione Formato  
Cusimano2020_Article_BiogenicIron-silverNanoparticl.pdf

solo gestori archivio

Descrizione: Full text ahead of print
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.4 MB
Formato Adobe PDF
1.4 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
s00253-020-10686-w.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2475815
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact