Measuring the spin structure of protons and neutrons tests our understanding of how they arise from quarks and gluons, the fundamental building blocks of nuclear matter. At long distances, the coupling constant of the strong interaction becomes large, requiring non-perturbative methods to calculate quantum chromodynamics processes, such as lattice gauge theory or effective field theories. Here we report proton spin structure measurements from scattering a polarized electron beam off polarized protons. The spin-dependent cross-sections were measured at large distances, corresponding to the region of low momentum transfer squared between 0.012 and 1.0 GeV2. This kinematic range provides unique tests of chiral effective field theory predictions. Our results show that a complete description of the nucleon spin remains elusive, and call for further theoretical works, for example, in lattice quantum chromodynamics. Finally, our data extrapolated to the photon point agree with the Gerasimov–Drell–Hearn sum rule, a fundamental prediction of quantum field theory that relates the anomalous magnetic moment of the proton to its integrated spin-dependent cross-sections.

Measurement of the proton spin structure at long distances

Barion L.;Ciullo G.;Contalbrigo M.;Lenisa P.;Pappalardo L.;
2021

Abstract

Measuring the spin structure of protons and neutrons tests our understanding of how they arise from quarks and gluons, the fundamental building blocks of nuclear matter. At long distances, the coupling constant of the strong interaction becomes large, requiring non-perturbative methods to calculate quantum chromodynamics processes, such as lattice gauge theory or effective field theories. Here we report proton spin structure measurements from scattering a polarized electron beam off polarized protons. The spin-dependent cross-sections were measured at large distances, corresponding to the region of low momentum transfer squared between 0.012 and 1.0 GeV2. This kinematic range provides unique tests of chiral effective field theory predictions. Our results show that a complete description of the nucleon spin remains elusive, and call for further theoretical works, for example, in lattice quantum chromodynamics. Finally, our data extrapolated to the photon point agree with the Gerasimov–Drell–Hearn sum rule, a fundamental prediction of quantum field theory that relates the anomalous magnetic moment of the proton to its integrated spin-dependent cross-sections.
2021
Zheng, X.; Deur, A.; Kang, H.; Kuhn, S. E.; Ripani, M.; Zhang, J.; Adhikari, K. P.; Adhikari, S.; Amaryan, M. J.; Atac, H.; Avakian, H.; Barion, L.; Battaglieri, M.; Bedlinskiy, I.; Benmokhtar, F.; Bianconi, A.; Biselli, A. S.; Boiarinov, S.; Bondi, M.; Bossu, F.; Bosted, P.; Briscoe, W. J.; Brock, J.; Brooks, W. K.; Bulumulla, D.; Burkert, V. D.; Carlin, C.; Carman, D. S.; Carvajal, J. C.; Celentano, A.; Chatagnon, P.; Chetry, T.; Chen, J. -P.; Choi, S.; Ciullo, G.; Clark, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; Defurne, M.; Diehl, S.; Djalali, C.; Drozdov, V. A.; Dupre, R.; Ehrhart, M.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fersch, R.; Filippi, A.; Forest, T. A.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. -X.; Glazier, D. I.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guler, N.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hattawy, M.; Hayward, T. B.; Heddle, D.; Hicks, K.; Hobart, A.; Holmstrom, T.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Isupov, E. L.; Jo, H. S.; Joo, K.; Joosten, S.; Keith, C. D.; Keller, D.; Khanal, A.; Khandaker, M.; Kim, C. W.; Kim, W.; Klein, F. J.; Kripko, A.; Kubarovsky, V.; Lanza, L.; Leali, M.; Lenisa, P.; Livingston, K.; Long, E.; Macgregor, I. J. D.; Markov, N.; Marsicano, L.; Mascagna, V.; Mckinnon, B.; Meekins, D. G.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Mullen, C.; Nadel-Turonski, P.; Neupane, K.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Pappalardo, L.; Park, K.; Pasyuk, E.; Phelps, W.; Phillips, S. K.; Pogorelko, O.; Poudel, J.; Prok, Y.; Raue, B. A.; Ritman, J.; Rizzo, A.; Rosner, G.; Rossi, P.; Rowley, J.; Sabatie, F.; Salgado, C.; Schmidt, A.; Schumacher, R. A.; Seely, M. L.; Sharabian, Y. G.; Shrestha, U.; Sirca, S.; Slifer, K.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Sulkosky, V.; Tyler, N.; Ungaro, M.; Venturelli, L.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Yale, B.; Zachariou, N.; Zhao, Z. W.
File in questo prodotto:
File Dimensione Formato  
2021_natures41567-021-01198-z.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.8 MB
Formato Adobe PDF
1.8 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2473884
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 13
social impact