Denitrification is a key process buffering the environmental impacts of agricultural nitrate loads but, at present, remains the least understood and poorly quantified sink in nitrogen budgets at the watershed scale. The present work deals with a comprehensive and detailed analysis of nitrogen sources and sinks in the Burana–Volano–Navigabile basin, the southernmost portion of the Po River valley (Northern Italy), an intensively cultivated (> 85% of basin surface) low-lying landscape. Agricultural census data, extensive monitoring of surface–groundwater interactions, and laboratory experiments targeting N fluxes and pools were combined to provide reliable estimates of soil denitrification at the basin scale. In the agricultural soils of the basin, nitrogen inputs exceeded outputs by nearly 40% (~ 80 kg N ha−1 year−1), but this condition of potential N excess did not translate into widespread nitrate pollution. The general scarcity of inorganic nitrogen species in groundwater and soils indicated limited leakage and storage. Multiple pieces of evidence supported that soil denitrification was the process that needed to be introduced in the budget to explain the fate of the missing nitrogen. Denitrification was likely boosted in the soils of the studied basin, prone to waterlogged conditions and consequently oxygen-limited, owing to peculiar features such as fine texture, low hydraulic conductivity, and shallow water table. The present study highlighted the substantial contribution of soil denitrification to balancing nitrogen inputs and outputs in agricultural lowland basins, a paramount ecosystem function preventing eutrophication phenomena.

Soil Denitrification, the Missing Piece in the Puzzle of Nitrogen Budget in Lowland Agricultural Basins

Soana E.
Primo
;
Vincenzi F.
Secondo
;
Castaldelli G.
Ultimo
2022

Abstract

Denitrification is a key process buffering the environmental impacts of agricultural nitrate loads but, at present, remains the least understood and poorly quantified sink in nitrogen budgets at the watershed scale. The present work deals with a comprehensive and detailed analysis of nitrogen sources and sinks in the Burana–Volano–Navigabile basin, the southernmost portion of the Po River valley (Northern Italy), an intensively cultivated (> 85% of basin surface) low-lying landscape. Agricultural census data, extensive monitoring of surface–groundwater interactions, and laboratory experiments targeting N fluxes and pools were combined to provide reliable estimates of soil denitrification at the basin scale. In the agricultural soils of the basin, nitrogen inputs exceeded outputs by nearly 40% (~ 80 kg N ha−1 year−1), but this condition of potential N excess did not translate into widespread nitrate pollution. The general scarcity of inorganic nitrogen species in groundwater and soils indicated limited leakage and storage. Multiple pieces of evidence supported that soil denitrification was the process that needed to be introduced in the budget to explain the fate of the missing nitrogen. Denitrification was likely boosted in the soils of the studied basin, prone to waterlogged conditions and consequently oxygen-limited, owing to peculiar features such as fine texture, low hydraulic conductivity, and shallow water table. The present study highlighted the substantial contribution of soil denitrification to balancing nitrogen inputs and outputs in agricultural lowland basins, a paramount ecosystem function preventing eutrophication phenomena.
2022
Soana, E.; Vincenzi, F.; Colombani, N.; Mastrocicco, M.; Fano, E. A.; Castaldelli, G.
File in questo prodotto:
File Dimensione Formato  
1_Soana et al_2022.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 355.5 kB
Formato Adobe PDF
355.5 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2472972
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact