On a convex set, we prove that the Poincar'e-Sobolev constant for functions vanishing at the boundary can be bounded from above by the ratio between the perimeter and a suitable power of the $N-$dimensional measure. This generalizes an old result by P'olya. As a consequence, we obtain the sharp {it Buser's inequality} (or reverse Cheeger inequality) for the $p-$Laplacian on convex sets. This is valid in every dimension and for every $1<+infty$. We also highlight the appearing of a subtle phenomenon in shape optimization, as the integrability exponent varies.

On principal frequencies and isoperimetric ratios in convex sets

Brasco, Lorenzo
2020

Abstract

On a convex set, we prove that the Poincar'e-Sobolev constant for functions vanishing at the boundary can be bounded from above by the ratio between the perimeter and a suitable power of the $N-$dimensional measure. This generalizes an old result by P'olya. As a consequence, we obtain the sharp {it Buser's inequality} (or reverse Cheeger inequality) for the $p-$Laplacian on convex sets. This is valid in every dimension and for every $1<+infty$. We also highlight the appearing of a subtle phenomenon in shape optimization, as the integrability exponent varies.
2020
Brasco, Lorenzo
File in questo prodotto:
File Dimensione Formato  
brabus_final_rev.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 630.25 kB
Formato Adobe PDF
630.25 kB Adobe PDF Visualizza/Apri
AFST_2020_6_29_4_977_0.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 853.03 kB
Formato Adobe PDF
853.03 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2472226
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact