We study the long-time behavior for the solution of the Porous Medium Equation in an open bounded connected set, with smooth boundary. Homogeneous Dirichlet boundary conditions are considered. We prove that if the initial datum has sufficiently small energy, then the solution converges to a nontrivial constant sign solution of a sublinear Lane-Emden equation, once suitably rescaled. We point out that the initial datum is allowed to be sign-changing. We also give a sufficient energetic criterion on the initial datum, which permits to decide whether convergence takes place towards the positive solution or to the negative one.
Long-time behavior for the porous medium equation with small initial energy
Brasco L.
Co-primo
;
2022
Abstract
We study the long-time behavior for the solution of the Porous Medium Equation in an open bounded connected set, with smooth boundary. Homogeneous Dirichlet boundary conditions are considered. We prove that if the initial datum has sufficiently small energy, then the solution converges to a nontrivial constant sign solution of a sublinear Lane-Emden equation, once suitably rescaled. We point out that the initial datum is allowed to be sign-changing. We also give a sufficient energetic criterion on the initial datum, which permits to decide whether convergence takes place towards the positive solution or to the negative one.File | Dimensione | Formato | |
---|---|---|---|
bravol_final_rev.pdf
solo gestori archivio
Tipologia:
Pre-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
472.72 kB
Formato
Adobe PDF
|
472.72 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
1-s2.0-S0001870821004680-main.pdf
solo gestori archivio
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
687.85 kB
Formato
Adobe PDF
|
687.85 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
2011.04619.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
456.51 kB
Formato
Adobe PDF
|
456.51 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.