We study the long-time behavior for the solution of the Porous Medium Equation in an open bounded connected set, with smooth boundary. Homogeneous Dirichlet boundary conditions are considered. We prove that if the initial datum has sufficiently small energy, then the solution converges to a nontrivial constant sign solution of a sublinear Lane-Emden equation, once suitably rescaled. We point out that the initial datum is allowed to be sign-changing. We also give a sufficient energetic criterion on the initial datum, which permits to decide whether convergence takes place towards the positive solution or to the negative one.

Long-time behavior for the porous medium equation with small initial energy

Brasco L.
Co-primo
;
2022

Abstract

We study the long-time behavior for the solution of the Porous Medium Equation in an open bounded connected set, with smooth boundary. Homogeneous Dirichlet boundary conditions are considered. We prove that if the initial datum has sufficiently small energy, then the solution converges to a nontrivial constant sign solution of a sublinear Lane-Emden equation, once suitably rescaled. We point out that the initial datum is allowed to be sign-changing. We also give a sufficient energetic criterion on the initial datum, which permits to decide whether convergence takes place towards the positive solution or to the negative one.
2022
Brasco, L.; Volzone, B.
File in questo prodotto:
File Dimensione Formato  
bravol_final_rev.pdf

solo gestori archivio

Tipologia: Pre-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 472.72 kB
Formato Adobe PDF
472.72 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1-s2.0-S0001870821004680-main.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 687.85 kB
Formato Adobe PDF
687.85 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
2011.04619.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 456.51 kB
Formato Adobe PDF
456.51 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2472214
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact