Background: Cebranopadol, a mixed nociceptin/opioid receptor full agonist, can effectively relieve pain in rodents and humans. However, it is unclear to what degree different opioid receptor subtypes contribute to its antinociception and whether cebranopadol lacks acute opioid-associated side effects in primates. The authors hypothesized that coactivation of nociceptin receptors and μ receptors produces analgesia with reduced side effects in nonhuman primates. Methods: The antinociceptive, reinforcing, respiratory-depressant, and pruritic effects of cebranopadol in adult rhesus monkeys (n = 22) were compared with μ receptor agonists fentanyl and morphine using assays, including acute thermal nociception, IV drug self-administration, telemetric measurement of respiratory function, and itch-scratching responses. Results: Subcutaneous cebranopadol (ED50, 2.9 [95% CI, 1.8 to 4.6] μg/kg) potently produced antinociception compared to fentanyl (15.8 [14.6 to 17.1] μg/kg). Pretreatment with antagonists selective for nociceptin and μ receptors, but not δ and κ receptor antagonists, caused rightward shifts of the antinociceptive dose-response curve of cebranopadol with dose ratios of 2 and 9, respectively. Cebranopadol produced reinforcing effects comparable to fentanyl, but with decreased reinforcing strength, i.e., cebranopadol (mean ± SD, 7 ± 3 injections) versus fentanyl (12 ± 3 injections) determined by a progressive-ratio schedule of reinforcement. Unlike fentanyl (8 ± 2 breaths/min), systemic cebranopadol at higher doses did not decrease the respiratory rate (17 ± 2 breaths/min). Intrathecal cebranopadol (1 μg) exerted full antinociception with minimal scratching responses (231 ± 137 scratches) in contrast to intrathecal morphine (30 μg; 3,009 ± 1,474 scratches). Conclusions: In nonhuman primates, the μ receptor mainly contributed to cebranopadol-induced antinociception. Similar to nociceptin/μ receptor partial agonists, cebranopadol displayed reduced side effects, such as a lack of respiratory depression and pruritus. Although cebranopadol showed reduced reinforcing strength, its detectable reinforcing effects and strength warrant caution, which is critical for the development and clinical use of cebranopadol.

Functional Profile of Systemic and Intrathecal Cebranopadol in Nonhuman Primates

Trapella C.
Secondo
;
2021

Abstract

Background: Cebranopadol, a mixed nociceptin/opioid receptor full agonist, can effectively relieve pain in rodents and humans. However, it is unclear to what degree different opioid receptor subtypes contribute to its antinociception and whether cebranopadol lacks acute opioid-associated side effects in primates. The authors hypothesized that coactivation of nociceptin receptors and μ receptors produces analgesia with reduced side effects in nonhuman primates. Methods: The antinociceptive, reinforcing, respiratory-depressant, and pruritic effects of cebranopadol in adult rhesus monkeys (n = 22) were compared with μ receptor agonists fentanyl and morphine using assays, including acute thermal nociception, IV drug self-administration, telemetric measurement of respiratory function, and itch-scratching responses. Results: Subcutaneous cebranopadol (ED50, 2.9 [95% CI, 1.8 to 4.6] μg/kg) potently produced antinociception compared to fentanyl (15.8 [14.6 to 17.1] μg/kg). Pretreatment with antagonists selective for nociceptin and μ receptors, but not δ and κ receptor antagonists, caused rightward shifts of the antinociceptive dose-response curve of cebranopadol with dose ratios of 2 and 9, respectively. Cebranopadol produced reinforcing effects comparable to fentanyl, but with decreased reinforcing strength, i.e., cebranopadol (mean ± SD, 7 ± 3 injections) versus fentanyl (12 ± 3 injections) determined by a progressive-ratio schedule of reinforcement. Unlike fentanyl (8 ± 2 breaths/min), systemic cebranopadol at higher doses did not decrease the respiratory rate (17 ± 2 breaths/min). Intrathecal cebranopadol (1 μg) exerted full antinociception with minimal scratching responses (231 ± 137 scratches) in contrast to intrathecal morphine (30 μg; 3,009 ± 1,474 scratches). Conclusions: In nonhuman primates, the μ receptor mainly contributed to cebranopadol-induced antinociception. Similar to nociceptin/μ receptor partial agonists, cebranopadol displayed reduced side effects, such as a lack of respiratory depression and pruritus. Although cebranopadol showed reduced reinforcing strength, its detectable reinforcing effects and strength warrant caution, which is critical for the development and clinical use of cebranopadol.
2021
Ding, H.; Trapella, C.; Kiguchi, N.; Hsu, F. -C.; Calo, G.; Ko, M. -C.
File in questo prodotto:
File Dimensione Formato  
Anesthesiology Cebranopadol.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.28 MB
Formato Adobe PDF
1.28 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2472127
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact