A projective variety X⊂PN is h-identifiable if the generic element in its h-secant variety uniquely determines h points on X. In this paper we propose an entirely new approach to study identifiability, connecting it to the notion of secant defect. In this way we are able to improve all known bounds on identifiability. In particular we give optimal bounds for some Segre and Segre-Veronese varieties and provide the first identifiability statements for Grassmann varieties.

From non-defectivity to identifiability

Casarotti, Alex
Co-primo
;
Mella, Massimiliano
Co-primo
2023

Abstract

A projective variety X⊂PN is h-identifiable if the generic element in its h-secant variety uniquely determines h points on X. In this paper we propose an entirely new approach to study identifiability, connecting it to the notion of secant defect. In this way we are able to improve all known bounds on identifiability. In particular we give optimal bounds for some Segre and Segre-Veronese varieties and provide the first identifiability statements for Grassmann varieties.
2023
Casarotti, Alex; Mella, Massimiliano
File in questo prodotto:
File Dimensione Formato  
JEMS-1198-2.pdf

solo gestori archivio

Descrizione: Full text ahead of print
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 273.7 kB
Formato Adobe PDF
273.7 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
10.4171-jems-1198.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 282.44 kB
Formato Adobe PDF
282.44 kB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2471699
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 8
social impact