A projective variety X⊂PN is h-identifiable if the generic element in its h-secant variety uniquely determines h points on X. In this paper we propose an entirely new approach to study identifiability, connecting it to the notion of secant defect. In this way we are able to improve all known bounds on identifiability. In particular we give optimal bounds for some Segre and Segre-Veronese varieties and provide the first identifiability statements for Grassmann varieties.
From non-defectivity to identifiability
Casarotti, AlexCo-primo
;Mella, Massimiliano
Co-primo
2023
Abstract
A projective variety X⊂PN is h-identifiable if the generic element in its h-secant variety uniquely determines h points on X. In this paper we propose an entirely new approach to study identifiability, connecting it to the notion of secant defect. In this way we are able to improve all known bounds on identifiability. In particular we give optimal bounds for some Segre and Segre-Veronese varieties and provide the first identifiability statements for Grassmann varieties.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
JEMS-1198-2.pdf
solo gestori archivio
Descrizione: Full text ahead of print
Tipologia:
Full text (versione editoriale)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
273.7 kB
Formato
Adobe PDF
|
273.7 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
10.4171-jems-1198.pdf
accesso aperto
Descrizione: Full text editoriale
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
282.44 kB
Formato
Adobe PDF
|
282.44 kB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.