This research proposes a high-performance algorithm for the compression rate of electrical power quality signals, using wavelet transformation. To manage the massive amount of data the telecommunications networks are constantly acquiring it is necessary to study techniques for data compression, which will save bandwidth and reduce costs extensively by avoiding having massive data storage facilities. First biorthogonal wavelet level six transform is applied, however after compression, the reconstructed signal will have a different amplitude and it will be shifted when compared to the original one. Then, normalization is used (for amplitude correction between the original signal and reconstructed one) by multiplying the reconstructed signal by the result of the division between the original signal maximum magnitude and the reconstructed signal maximum magnitude. Thirdly, the ripple in the reconstructed signal is eliminated by applying a moving average filter. Finally, the shifting is corrected by finding the difference between the maximum points in a cycle of the original signal and the reconstructed one. After the compression algorithm was performed the best rates are 99.803% for compression rate, RTE 99.9479%, NMSE 0.000434, and Cross-Correlation 0.999925. Finally, this works presents two new performance criteria, compression time and recovery time, both of them in a real scenario will determinate how fast the algorithm can perform.
A novel algorithm for high compression rates focalized on electrical power quality signals
Simani SilvioSecondo
Writing – Review & Editing
;
2021
Abstract
This research proposes a high-performance algorithm for the compression rate of electrical power quality signals, using wavelet transformation. To manage the massive amount of data the telecommunications networks are constantly acquiring it is necessary to study techniques for data compression, which will save bandwidth and reduce costs extensively by avoiding having massive data storage facilities. First biorthogonal wavelet level six transform is applied, however after compression, the reconstructed signal will have a different amplitude and it will be shifted when compared to the original one. Then, normalization is used (for amplitude correction between the original signal and reconstructed one) by multiplying the reconstructed signal by the result of the division between the original signal maximum magnitude and the reconstructed signal maximum magnitude. Thirdly, the ripple in the reconstructed signal is eliminated by applying a moving average filter. Finally, the shifting is corrected by finding the difference between the maximum points in a cycle of the original signal and the reconstructed one. After the compression algorithm was performed the best rates are 99.803% for compression rate, RTE 99.9479%, NMSE 0.000434, and Cross-Correlation 0.999925. Finally, this works presents two new performance criteria, compression time and recovery time, both of them in a real scenario will determinate how fast the algorithm can perform.File | Dimensione | Formato | |
---|---|---|---|
Ruiz-et-al-Helyon-2021.pdf
accesso aperto
Descrizione: Full text editorial version
Tipologia:
Full text (versione editoriale)
Licenza:
Creative commons
Dimensione
2.17 MB
Formato
Adobe PDF
|
2.17 MB | Adobe PDF | Visualizza/Apri |
HELIYON_2018_4331_final.pdf
accesso aperto
Descrizione: Pre-print
Tipologia:
Pre-print
Licenza:
Creative commons
Dimensione
1.15 MB
Formato
Adobe PDF
|
1.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.