Anti-inflammatory treatment options for cystic fibrosis (CF) patients are currently limited and as such, there is an imperative need to develop new anti-inflammatory agents to reduce the persistent inflammation present within CF lungs. This study explored the potential of Diclofenac (DICLO) as a novel inhaled anti-inflammatory drug for CF treatment. The anti-inflammatory activity of DICLO on an air–liquid interface (ALI) cell culture model of healthy (NuLi-1) and CF (CuFi-1) airways showed a significant reduction in the secretion of pro-inflammatory cytokines, IL-6 and IL-8. Therefore, pressurized metered dose inhaler (pMDI) DICLO formulations were developed to allow targeted DICLO delivery to CF airways. As such, two pMDI DICLO formulations with varying ethanol concentrations: 5% (w/w) equating to 150 µg of DICLO per dose (Low dose), and 15% (w/w) equating to 430 µg of DICLO per dose (High dose) were developed and characterized to determine the optimum formulation. The Low dose pMDI DICLO formulation showed a significantly smaller particle diameter with uniform distribution resulting in a greater aerosol performance when compared to High dose formulation. Consequently, the Low dose pMDI DICLO formulation was further evaluated in terms of in vitro transport characteristics and anti-inflammatory activity. Importantly, the DICLO pMDI displayed anti-inflammatory activity in both healthy and CF in vitro models, highlighting the potential of an aerosolized low-dose DICLO formulation as a promising inhaled anti-inflammatory therapy for CF treatment.

Development and in vitro characterization of a novel pMDI diclofenac formulation as an inhalable anti-inflammatory therapy for cystic fibrosis

Meneguzzo G.;Scalia S.;Traini D.
Ultimo
2021

Abstract

Anti-inflammatory treatment options for cystic fibrosis (CF) patients are currently limited and as such, there is an imperative need to develop new anti-inflammatory agents to reduce the persistent inflammation present within CF lungs. This study explored the potential of Diclofenac (DICLO) as a novel inhaled anti-inflammatory drug for CF treatment. The anti-inflammatory activity of DICLO on an air–liquid interface (ALI) cell culture model of healthy (NuLi-1) and CF (CuFi-1) airways showed a significant reduction in the secretion of pro-inflammatory cytokines, IL-6 and IL-8. Therefore, pressurized metered dose inhaler (pMDI) DICLO formulations were developed to allow targeted DICLO delivery to CF airways. As such, two pMDI DICLO formulations with varying ethanol concentrations: 5% (w/w) equating to 150 µg of DICLO per dose (Low dose), and 15% (w/w) equating to 430 µg of DICLO per dose (High dose) were developed and characterized to determine the optimum formulation. The Low dose pMDI DICLO formulation showed a significantly smaller particle diameter with uniform distribution resulting in a greater aerosol performance when compared to High dose formulation. Consequently, the Low dose pMDI DICLO formulation was further evaluated in terms of in vitro transport characteristics and anti-inflammatory activity. Importantly, the DICLO pMDI displayed anti-inflammatory activity in both healthy and CF in vitro models, highlighting the potential of an aerosolized low-dose DICLO formulation as a promising inhaled anti-inflammatory therapy for CF treatment.
2021
Sheikh, Z.; Gomes Dos Reis, L.; Bradbury, P.; Meneguzzo, G.; Scalia, S.; Young, P. M.; Ong, H. X.; Traini, D.
File in questo prodotto:
File Dimensione Formato  
ID214640.pdf

solo gestori archivio

Descrizione: versione editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 930.76 kB
Formato Adobe PDF
930.76 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2462806
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact