Poly(3,4-ethylenedioxythiophene)-Nafion (PEDOT:Nafion) is emerging as a promising alternative to PEDOT-polystyrene sulfonate (PEDOT:PSS) in organic bioelectronics. However, the biocompatibility of PEDOT:Nafion has not been investigated to date, limiting its deployment toward in vivo applications such as neural recording and stimulation. In the present study, the in vitro cytotoxicity of PEDOT:Nafion coatings, obtained by a water-based PEDOT:Nafion formulation, was evaluated using a primary cell culture of rat fibroblasts. The surface of PEDOT:Nafion coating was characterized by Atomic Force Microscopy (AFM) and water contact angle measurements. Fibroblasts adhesion and morphology was investigated by scanning electron microscopy (SEM) and AFM measurements. Cell proliferation was assessed by fluorescence microscopy, while cell viability was quantified by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), lactate dehydrogenase (LDH) and neutral red assays. The results showed that PEDOT:Nafion coatings obtained by the water dispersion were not cytotoxic, making the latter a reliable alternative to PEDOT:PSS dispersion, especially in terms of chronic in vivo applications.

Evaluation of the in vitro biocompatibility of PEDOT: Nafion coatings

Guzzo S.
Primo
;
Carli S.
Secondo
;
Pavan B.;Lunghi A.;Bianchi M.
Ultimo
2021

Abstract

Poly(3,4-ethylenedioxythiophene)-Nafion (PEDOT:Nafion) is emerging as a promising alternative to PEDOT-polystyrene sulfonate (PEDOT:PSS) in organic bioelectronics. However, the biocompatibility of PEDOT:Nafion has not been investigated to date, limiting its deployment toward in vivo applications such as neural recording and stimulation. In the present study, the in vitro cytotoxicity of PEDOT:Nafion coatings, obtained by a water-based PEDOT:Nafion formulation, was evaluated using a primary cell culture of rat fibroblasts. The surface of PEDOT:Nafion coating was characterized by Atomic Force Microscopy (AFM) and water contact angle measurements. Fibroblasts adhesion and morphology was investigated by scanning electron microscopy (SEM) and AFM measurements. Cell proliferation was assessed by fluorescence microscopy, while cell viability was quantified by 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT), lactate dehydrogenase (LDH) and neutral red assays. The results showed that PEDOT:Nafion coatings obtained by the water dispersion were not cytotoxic, making the latter a reliable alternative to PEDOT:PSS dispersion, especially in terms of chronic in vivo applications.
2021
Guzzo, S.; Carli, S.; Pavan, B.; Lunghi, A.; Murgia, M.; Bianchi, M.
File in questo prodotto:
File Dimensione Formato  
nanomaterials-11-02022.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 8.22 MB
Formato Adobe PDF
8.22 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2461873
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 14
social impact