In this study two phase change materials (PCMs) mixed with sand were evaluated for distributed latent heat thermal energy storage (LHTES) coupled with a novel Flat-Panel ground heat exchanger (GHE) for shallow geothermal applications. N-Octadecane and a commercial paraffin-based PCM were mixed (30% v/v) separately with sand, which is commonly used as backfilling material for GHE. Both two mixtures underwent 16 thermal cycles and specimen’s temperatures and their variation over time were analyzed to evaluate phase change stability and supercooling. Grain size laser diffraction and pore analysis were performed together with optical microscopy, environmental scanning electron microscopy coupled with X-Ray spectrometry (ESEM-EDS) and Fourier transform infrared spectroscopy (FTIR) analysis to evaluate PCMs-sand dynamic interaction over time and temperature. Results shown that sand addition halves n-Octadecane phase change time, although leading to a limited supercooling equal to 1 °C. Sand addition to commercial PCM leaded to a similar increasing in heat transfer, however in absence of supercooling phenomena. These performances were constant through 16 thermal cycles. Therefore, PCMs mixing in sand as mixture for GHEs backfilling material can be considered a strategy to enhance thermal storage of backfilling material, by increasing the underground thermal energy storage and then the exploitation carried out by shallow geothermal applications.

Phase change material-sand mixtures for distributed latent heat thermal energy storage: Interaction and performance analysis

Merchiori, Sebastiano
Data Curation
;
Larwa, Barbara
Validation
;
Bottarelli, Michele
Penultimo
Methodology
;
2021

Abstract

In this study two phase change materials (PCMs) mixed with sand were evaluated for distributed latent heat thermal energy storage (LHTES) coupled with a novel Flat-Panel ground heat exchanger (GHE) for shallow geothermal applications. N-Octadecane and a commercial paraffin-based PCM were mixed (30% v/v) separately with sand, which is commonly used as backfilling material for GHE. Both two mixtures underwent 16 thermal cycles and specimen’s temperatures and their variation over time were analyzed to evaluate phase change stability and supercooling. Grain size laser diffraction and pore analysis were performed together with optical microscopy, environmental scanning electron microscopy coupled with X-Ray spectrometry (ESEM-EDS) and Fourier transform infrared spectroscopy (FTIR) analysis to evaluate PCMs-sand dynamic interaction over time and temperature. Results shown that sand addition halves n-Octadecane phase change time, although leading to a limited supercooling equal to 1 °C. Sand addition to commercial PCM leaded to a similar increasing in heat transfer, however in absence of supercooling phenomena. These performances were constant through 16 thermal cycles. Therefore, PCMs mixing in sand as mixture for GHEs backfilling material can be considered a strategy to enhance thermal storage of backfilling material, by increasing the underground thermal energy storage and then the exploitation carried out by shallow geothermal applications.
2021
Barbi, Silvia; Barbieri, Francesco; Marinelli, Simona; Rimini, Bianca; Merchiori, Sebastiano; Larwa, Barbara; Bottarelli, Michele; Montorsi, Monia
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0960148121000951-main.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 12.45 MB
Formato Adobe PDF
12.45 MB Adobe PDF Visualizza/Apri
1-s2.0-S0960148121000951-main (1).pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.54 MB
Formato Adobe PDF
2.54 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2453254
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact