With the advent and increased usage of posterior, lateral, and anterior surgical approaches to the craniocervical junction (CCJ), it is essential to have a sound understanding of the osseous, ligamentous, and neurovascular layers of this region as well as their three-dimensional (3D) orientations and functional kinematics. Advances in 3D technology can be leveraged to develop a more nuanced and comprehensive understanding of the CCJ, classically depicted via dissections and sketches. As such, this study aims to illustrate - with the use of 3D technologies - the major anatomical landmarks of the CCJ in an innovative and informative way. Photogrammetry, structured light scanning, and 3D reconstruction of medical images were used to generate these high-resolution volumetric models. A clear knowledge of the critical anatomical structures and morphometrics of the CCJ is crucial for the diagnosis, classification, and treatment of pathologies in this transitional region.

Immersive Surgical Anatomy of the Craniocervical Junction

Vigo, Vera
Primo
;
De Bonis, Pasquale;
2020

Abstract

With the advent and increased usage of posterior, lateral, and anterior surgical approaches to the craniocervical junction (CCJ), it is essential to have a sound understanding of the osseous, ligamentous, and neurovascular layers of this region as well as their three-dimensional (3D) orientations and functional kinematics. Advances in 3D technology can be leveraged to develop a more nuanced and comprehensive understanding of the CCJ, classically depicted via dissections and sketches. As such, this study aims to illustrate - with the use of 3D technologies - the major anatomical landmarks of the CCJ in an innovative and informative way. Photogrammetry, structured light scanning, and 3D reconstruction of medical images were used to generate these high-resolution volumetric models. A clear knowledge of the critical anatomical structures and morphometrics of the CCJ is crucial for the diagnosis, classification, and treatment of pathologies in this transitional region.
2020
Vigo, Vera; Hirpara, Ankit; Yassin, Mohamed; Wang, Minghao; Chou, Dean; De Bonis, Pasquale; Abla, Adib; Rodriguez Rubio, Roberto
File in questo prodotto:
File Dimensione Formato  
cureus-0012-00000010364.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 3.27 MB
Formato Adobe PDF
3.27 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2441443
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 4
social impact