The design of active photocathodes for the hydrogen evolution reaction (HER) is a crucial step in the development of dye-sensitized photoelectrochemical cells (DS-PECs) aimed at solar-assisted water splitting. In the present work, we report on the use of orange CdTexS1-x quantum dots (QDs) with an average diameter of ca. 3.5 nm, featuring different capping agents (MAA, MPA, and MSA) for the sensitization of electrodes based on nanostructured NiO. Photoelectrochemical characterization of the resulting NiO|QDs electrodes in the presence of [CoIII(NH3)5Cl]Cl2 as an irreversible electron acceptor elects MAA-capped QDs as the most active sample to achieve substantial photocurrent densities thanks to both improved surface coverage and injection ability. Functionalization of the NiO|QDs electrodes with either heterogeneous Pt or the molecular nickel bis(diphosphine) complex (1) as the hydrogen evolving catalysts (HECs) yields active photocathodes capable of promoting hydrogen evolution upon photoirradiation (maximum photocurrent densities of -16(±2) and -20(±1) μA·cm-2 for Pt and 1 HECs, respectively, at 0 V vs. NHE, 70-80% faradaic efficiency, maximum IPCE of ca. 0.2%). The photoelectrochemical activity is limited by the small surface concentration of the QD sensitizers on the NiO surface and the competitive light absorption by the NiO material which suggests that the match between dye adsorption and the available surface area is critical to achieving efficient hydrogen evolution by thiol-capped QDs.

Photoelectrochemical hydrogen evolution using CdTexS1-x quantum dots as sensitizers on NiO photocathodes

Elisabetta Benazzi
Primo
;
Vito Cristino
Secondo
;
Rita Boaretto;Stefano Caramori
Penultimo
;
Mirco Natali
Ultimo
2021

Abstract

The design of active photocathodes for the hydrogen evolution reaction (HER) is a crucial step in the development of dye-sensitized photoelectrochemical cells (DS-PECs) aimed at solar-assisted water splitting. In the present work, we report on the use of orange CdTexS1-x quantum dots (QDs) with an average diameter of ca. 3.5 nm, featuring different capping agents (MAA, MPA, and MSA) for the sensitization of electrodes based on nanostructured NiO. Photoelectrochemical characterization of the resulting NiO|QDs electrodes in the presence of [CoIII(NH3)5Cl]Cl2 as an irreversible electron acceptor elects MAA-capped QDs as the most active sample to achieve substantial photocurrent densities thanks to both improved surface coverage and injection ability. Functionalization of the NiO|QDs electrodes with either heterogeneous Pt or the molecular nickel bis(diphosphine) complex (1) as the hydrogen evolving catalysts (HECs) yields active photocathodes capable of promoting hydrogen evolution upon photoirradiation (maximum photocurrent densities of -16(±2) and -20(±1) μA·cm-2 for Pt and 1 HECs, respectively, at 0 V vs. NHE, 70-80% faradaic efficiency, maximum IPCE of ca. 0.2%). The photoelectrochemical activity is limited by the small surface concentration of the QD sensitizers on the NiO surface and the competitive light absorption by the NiO material which suggests that the match between dye adsorption and the available surface area is critical to achieving efficient hydrogen evolution by thiol-capped QDs.
2021
Benazzi, Elisabetta; Cristino, Vito; Boaretto, Rita; Caramori, Stefano; Natali, Mirco
File in questo prodotto:
File Dimensione Formato  
2021 - Dalton Trans. - NiO+QDs.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2438282
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 12
  • ???jsp.display-item.citation.isi??? 11
social impact