XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)-1 and (2.2± 0.5)× 10-3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10-48 cm2 for a 50 GeV/c2 mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c2 WIMP with cross-sections above 2.6×10-48 cm2 (5.0×10-48 cm2) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10-43 cm2 (6.0×10-42 cm2).

Projected WIMP sensitivity of the XENONnT dark matter experiment

Zavattini G.;
2020

Abstract

XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to 12.3 ± 0.6 (keV t y)-1 and (2.2± 0.5)× 10-3 (keV t y)-1, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of 1.4×10-48 cm2 for a 50 GeV/c2 mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T . In addition, we show that for a 50 GeV/c2 WIMP with cross-sections above 2.6×10-48 cm2 (5.0×10-48 cm2) the median XENONnT discovery significance exceeds 3σ (5σ). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches 2.2×10-43 cm2 (6.0×10-42 cm2).
2020
Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F. D.; Antochi, V. C.; Angelino, E.; Angevaare, J. R.; Arneodo, F.; Barge, D.; Baudis, L.; Bauermeister, B.; Bellagamba, L.; Benabderrahmane, M. L.; Berger, T.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Capelli, C.; Cardoso, J. M. R.; Cichon, D.; Cimmino, B.; Clark, M.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; Depoian, A.; Di Gangi, P.; Di Giovanni, A.; Di Stefano, R.; Diglio, S.; Elykov, A.; Eurin, G.; Ferella, A. D.; Fulgione, W.; Gaemers, P.; Gaior, R.; Galloway, M.; Gao, F.; Grandi, L.; Hasterok, C.; Hils, C.; Hiraide, K.; Hoetzsch, L.; Howlett, J.; Iacovacci, M.; Itow, Y.; Joerg, F.; Kato, N.; Kazama, S.; Kobayashi, M.; Koltman, G.; Kopec, A.; Landsman, H.; Lang, R. F.; Levinson, L.; Lin, Q.; Lindemann, S.; Lindner, M.; Lombardi, F.; Long, J.; Lopes, J. A. M.; Fune, E. L.; Macolino, C.; Mahlstedt, J.; Mancuso, A.; Manenti, L.; Manfredini, A.; Marignetti, F.; Undagoitia, T. M.; Martens, K.; Masbou, J.; Masson, D.; Mastroianni, S.; Messina, M.; Miuchi, K.; Mizukoshi, K.; Molinario, A.; Mora, K.; Moriyama, S.; Mosbacher, Y.; Murra, M.; Naganoma, J.; Ni, K.; Oberlack, U.; Odgers, K.; Palacio, J.; Pelssers, B.; Peres, R.; Pienaar, J.; Pizzella, V.; Plante, G.; Qin, J.; Qiu, H.; Garcia, D. R.; Reichard, S.; Rocchetti, A.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Sarcevic, N.; Scheibelhut, M.; Schreiner, J.; Schulte, D.; Schumann, M.; Lavina, L. S.; Selvi, M.; Semeria, F.; Shagin, P.; Shockley, E.; Silva, M.; Simgen, H.; Takeda, A.; Therreau, C.; Thers, D.; Toschi, F.; Trinchero, G.; Tunnell, C.; Valerius, K.; Vargas, M.; Volta, G.; Wang, H.; Wei, Y.; Weinheimer, C.; Weiss, M.; Wenz, D.; Wittweg, C.; Xu, Z.; Yamashita, M.; Ye, J.; Zavattini, G.; Zhang, Y.; Zhu, T.; Zopounidis, J. P.
File in questo prodotto:
File Dimensione Formato  
Aprile_2020_J._Cosmol._Astropart._Phys._2020_031.pdf

solo gestori archivio

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 6.87 MB
Formato Adobe PDF
6.87 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2007.08796.pdf

accesso aperto

Descrizione: Pre-print
Tipologia: Pre-print
Licenza: Creative commons
Dimensione 6.6 MB
Formato Adobe PDF
6.6 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2437282
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 225
  • ???jsp.display-item.citation.isi??? 241
social impact