A natural single crystal of amethyst was investigated by means of continuous-wave and pulsed Electron Paramagnetic Resonance (EPR), with the aim of structurally characterizing the substitutional S2 Fe(III):H+ centre. In this centre, Fe(III) replaces Si(IV) in the tetrahedral site, whereas H+ is coupled to Fe(III) to maintain the charge balance. The spectroscopic investigations, mainly the interpretation of the Electron Spin Echo Envelope Modulation, allowed a detailed localisation of the proton to be obtained. H+ occurs in the channels crossing the crystal parallel to the crystallographic c axis, in a largely eccentric position. The Fe(III)-H+ distance, evaluated in 2.70 Å, is found associated with a non-negligible isotropic hyperfine coupling, which can be linked to the relative stability of the S2 centre in natural amethyst.

Characterisation of the Fe(III):H+ Defect Centre in Natural Amethyst

Di Benedetto F.
;
2020

Abstract

A natural single crystal of amethyst was investigated by means of continuous-wave and pulsed Electron Paramagnetic Resonance (EPR), with the aim of structurally characterizing the substitutional S2 Fe(III):H+ centre. In this centre, Fe(III) replaces Si(IV) in the tetrahedral site, whereas H+ is coupled to Fe(III) to maintain the charge balance. The spectroscopic investigations, mainly the interpretation of the Electron Spin Echo Envelope Modulation, allowed a detailed localisation of the proton to be obtained. H+ occurs in the channels crossing the crystal parallel to the crystallographic c axis, in a largely eccentric position. The Fe(III)-H+ distance, evaluated in 2.70 Å, is found associated with a non-negligible isotropic hyperfine coupling, which can be linked to the relative stability of the S2 centre in natural amethyst.
2020
Di Benedetto, F.; Zoleo, A.; Romanelli, M.
File in questo prodotto:
File Dimensione Formato  
APMR2020.pdf

accesso aperto

Descrizione: Full text editoriale
Tipologia: Full text (versione editoriale)
Licenza: Creative commons
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri

I documenti in SFERA sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11392/2436675
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact